An Estimation Method of Wind Forces Acting on Ships

By Tadao YAMANO (Member) and Yasuo SAITO (Member)
船体に働く風圧力の一推定法 *1

正会員 山野 慎夫 *2, 正会員 斎藤 泰夫 *2

An Estimation Method of Wind Forces Acting on Ships

By Tadao YAMANO (Member) and Yasuo SAIITO (Member)

Estimation of wind forces has become to be often required in ship design, for example, to check manoeuvrability in strong wind on ships with large above-water surfaces such as PCC and LNGC, to conduct wind correction to speed trial results, and to estimate sea margin.

The authors have tried to develop a practical estimation method of wind forces by which wind force coefficients can be estimated more accurately than ever in a short time using a small number of data which properly represents above-water ship form characteristics and are easily available on any ship.

This paper describes the development.

Keywords : Wind Forces, Practical Estimation Method, Above-Water Ship Form Characteristics, Wind Force Data base, Fourier Series, Regression Analysis

1. 緒言

自動車専用運搬船、LNG船、コンテナ船などの大きな風圧面を持つ船では、強風下の操縦性能が重要となる。たとえば川崎重工が我国で最初に建造した外航自動車専用運搬船「第10とよた丸」の設計では、模型船による風圧力を計測して、その結果を基に強風下の操縦性能を検討してはじめて、あの従来に大きく大きな上構を持つ船を、舵面積を適当に選ぶことにより実現できるという自信を得た。

風圧力の推定は、このような操縦性能の検討に限らず、試運転結果に対する風の修正、シーマージングの推定等にも必要であり、ますます頻繁に行われるようになって来ている。

一方で、このような目的に使える実用的な風圧力の推定式と呼ばれるものは、著者の知る限り、まだない。

従来、実務で採用された推定法は、初期設計の段階では通常は風圧力計測実験を行う余裕はないので、類似船の実験結果を流用するという方法である。多くの場合、同船種の水線上船体形状・载荷状態が近い船の資料を流用する。しかし、このような指標と風圧力との関係を明確に把握した上でこのような方法を採用する訳ではないし、またこれらの指標の近い船がない場合もある。すなわち、このような方法では常に精度の高い推定ができるとは限らない。

そこで、本論文では、多様な形状を持つ船の風圧力計測実験結果(1)(2)(3)(4)(5)6を基にして、まず水線上船体形状の特徴を適切に表示できる指標を明確化するとともにそれらと風圧力を関連づけ明確にする。つぎに、それらを基にして、任意の形状の船の風圧力を短時間かつ精度良く推定できる実用的な推定式を、導くことを試みる。

2. 基礎となる風圧力計測実験結果

Table 1に、本研究の基礎となる風圧力計測実験結果のデータについて、船種・載荷状態・水線上船体形状を表すパラメータを示す。Fig.1-(1/3), (2/3), (3/3)の側面形状を示す。

ここに
L：垂線間長 (m)
B：型幅 (m)
A_w：水線上正面投影面積 (m^2)
A_v：水線上側面投影面積 (m^2)
H_w：A_w/B：水線上正面平均高さ (m)
H_v：A_v/L：水線上側面平均高さ (m)
X_v：A_vの図心位置のF.P.からの距離 (m)

船種の風圧力係数の実験値を、Table 2およびFig.2に示す。船種をライン型、タンカ型、客船型に分類し

*1 昭和46年5月15日 関西造船協会春季講演会において講演、原稿受付 平成9年3月18日
*2 川崎重工業株式会社

123
Table 1: Particulars of sample data

<table>
<thead>
<tr>
<th>S.N.O.</th>
<th>Ship kind & condition</th>
<th>L/B</th>
<th>ky/ax</th>
<th>Ax/PL</th>
<th>Ax/B²</th>
<th>Ay/BL</th>
<th>Ay/L²</th>
<th>By/Hx</th>
<th>Lg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-01</td>
<td>CONTAINER========FULL</td>
<td>5.993</td>
<td>4.248</td>
<td>0.119</td>
<td>0.834</td>
<td>0.528</td>
<td>0.675</td>
<td>0.032</td>
<td>0.541</td>
</tr>
<tr>
<td>L-02</td>
<td>CONTAINER========FULL</td>
<td>6.992</td>
<td>2.784</td>
<td>0.159</td>
<td>0.973</td>
<td>0.527</td>
<td>0.705</td>
<td>0.054</td>
<td>0.541</td>
</tr>
<tr>
<td>L-03</td>
<td>CARGO========FULL</td>
<td>6.029</td>
<td>3.953</td>
<td>0.133</td>
<td>0.960</td>
<td>0.466</td>
<td>0.695</td>
<td>0.049</td>
<td>0.468</td>
</tr>
<tr>
<td>L-04</td>
<td>CARGO========FULL</td>
<td>6.029</td>
<td>4.687</td>
<td>0.183</td>
<td>1.070</td>
<td>0.588</td>
<td>0.758</td>
<td>0.050</td>
<td>0.468</td>
</tr>
<tr>
<td>L-05</td>
<td>CARGO========FULL</td>
<td>6.029</td>
<td>3.916</td>
<td>0.116</td>
<td>0.930</td>
<td>0.654</td>
<td>0.797</td>
<td>0.051</td>
<td>0.591</td>
</tr>
<tr>
<td>L-06</td>
<td>CARGO========FULL</td>
<td>6.029</td>
<td>4.207</td>
<td>0.177</td>
<td>0.985</td>
<td>0.601</td>
<td>0.778</td>
<td>0.053</td>
<td>0.582</td>
</tr>
<tr>
<td>L-07</td>
<td>CARGO========FULL</td>
<td>7.853</td>
<td>4.760</td>
<td>0.121</td>
<td>0.957</td>
<td>0.677</td>
<td>0.795</td>
<td>0.052</td>
<td>0.521</td>
</tr>
<tr>
<td>L-08</td>
<td>CARGO========FULL</td>
<td>7.853</td>
<td>4.301</td>
<td>0.057</td>
<td>0.782</td>
<td>0.415</td>
<td>0.603</td>
<td>0.043</td>
<td>0.545</td>
</tr>
<tr>
<td>L-09</td>
<td>CARGO========FULL</td>
<td>7.853</td>
<td>4.846</td>
<td>0.119</td>
<td>0.940</td>
<td>0.575</td>
<td>0.773</td>
<td>0.062</td>
<td>0.481</td>
</tr>
<tr>
<td>L-10</td>
<td>CARGO========FULL</td>
<td>8.117</td>
<td>4.216</td>
<td>0.102</td>
<td>0.930</td>
<td>0.634</td>
<td>0.784</td>
<td>0.052</td>
<td>0.508</td>
</tr>
<tr>
<td>L-11</td>
<td>CARGO========FULL</td>
<td>7.095</td>
<td>3.593</td>
<td>0.118</td>
<td>0.752</td>
<td>0.413</td>
<td>0.952</td>
<td>0.044</td>
<td>0.479</td>
</tr>
<tr>
<td>L-12</td>
<td>CARGO========FULL</td>
<td>7.095</td>
<td>4.054</td>
<td>0.162</td>
<td>1.200</td>
<td>0.617</td>
<td>0.978</td>
<td>0.051</td>
<td>0.463</td>
</tr>
</tbody>
</table>

Table 2: Typical examples of sampled wind force coefficient

(Cx=kv/Lg p A²/m²)

<table>
<thead>
<tr>
<th>o</th>
<th>L-01</th>
<th>L-02</th>
<th>T-03</th>
<th>T-04</th>
<th>T-05</th>
<th>T-06</th>
<th>T-07</th>
<th>P-01</th>
<th>P-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
</tr>
<tr>
<td>15.9</td>
<td>0.1000</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
</tr>
<tr>
<td>25.9</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
</tr>
<tr>
<td>35.9</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
</tr>
<tr>
<td>45.9</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>55.9</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

(Cv=kv/Lg p A²/m²)

<table>
<thead>
<tr>
<th>o</th>
<th>L-01</th>
<th>L-02</th>
<th>T-03</th>
<th>T-04</th>
<th>T-05</th>
<th>T-06</th>
<th>T-07</th>
<th>P-01</th>
<th>P-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
</tr>
<tr>
<td>15.9</td>
<td>0.1000</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
</tr>
<tr>
<td>25.9</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
</tr>
<tr>
<td>35.9</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
</tr>
<tr>
<td>45.9</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>55.9</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

(Cy=kv/Lg p A²/m²)

<table>
<thead>
<tr>
<th>o</th>
<th>L-01</th>
<th>L-02</th>
<th>T-03</th>
<th>T-04</th>
<th>T-05</th>
<th>T-06</th>
<th>T-07</th>
<th>P-01</th>
<th>P-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
</tr>
<tr>
<td>15.9</td>
<td>0.1000</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
<td>0.0900</td>
</tr>
<tr>
<td>25.9</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
</tr>
<tr>
<td>35.9</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
</tr>
<tr>
<td>45.9</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>55.9</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Fig. 1-(1/3) Ship profile (liner)

Fig. 1-(2/3) Ship profile (tanker)

Fig. 1-(3/3) Ship profile (passenger)

Fig. 2 Sampled wind force coefficients
で、正面風圧抵抗係数 C_z、側面風圧抵抗係数 C_y やび船体中心まわりの風圧モーメント係数 C_m の形で相対風向に示す。

なお、各係数の定義は下記の通りである。

$C_z = \frac{R_2}{0.5 \rho A_y W^2}$
$C_y = \frac{R_2}{0.5 \rho A_y W^2}$
$C_m = 10m \times 0.5 \rho A_y LW^2$
R_2 : 正面風圧抵抗 (Kg)
R_3 : 側面風圧抵抗 (Kg)
m : 船体中心まわり風圧モーメント ($Kg\cdot m$)
W : 相対風速 (m/sec)
ρ : 空気密度 ($Kg \cdot sec^2/m^4$)

これらの資料は、船研の風洞実験における実験の結果1)およびハンブルク大学における von B.Wagner による風洞実験2)を中心として、これらにその他の研究結果3)4)5)6)を加えたもので若干の改良を加えており、サンプルの大きさは、ライナ型14、タンカ型13、客船型11の計38である。

実験時のレイノズ数は 2 例 106 前後である。レイノズ数の差の影響はないとする。なお、実験方法は実験施設毎に異なるが、その差の影響は無視し得るものとする。

3. 風圧力係数の表示法

正面風圧抵抗係数 C_z、側面風圧抵抗係数 C_y、船体中心まわりの風圧モーメント係数 C_m は、いずれも、まず相対風向 θ の関数である。それらの関数の形と、水面上船体形状との相関を明らかにするのが今回の研究の主課題である。

Fig.2 から分かる様に、それらの関数を表示するには、θ の三角級数が適している。そこで、各係数の C_z、C_y、C_m を次式で表示することにする。

$$
C_z = \sum_{i=0}^{n} C_{z_i} \cos(i\theta) \\
C_y = \sum_{i=1}^{n} C_{y_i} \sin(i\theta) \\
C_m = \sum_{i=1}^{n} C_{m_i} \sin(i\theta)
$$

ここで、C_{z_i}、C_{m_i} については、相対風向 θ に対する変化が比較的単純であるために、3θ の項までで十分精度良いく近似できる。C_y については、θ が 0 度および 180 度の付近において複雑な変化をすることために、精度良く近似するためには、50 度の項までで必要である。

4. 水線上船体形状の表示法

水線上船体形状と風圧力係数との相関を明確にするために、まず水線上船体形状を定量的に表示する必要がある。このために Table 1 に示す無次元のパラメータを導入する。

これらのパラメータのみで水線上船体形状の特徴を十分に表現できるとは必ずしも言えないが、全船について共通に入手可能な資料の中から、Table 1 に示すパラメータを選ぶ。また、これらのパラメータの全てを解析に使用する必要はなく、これらの中でただがいに独立なもののみを使えば良い。

Table 3 および Fig.3 に各パラメータ間の相関を示す。この中でただがいに強い相関をみるパラメータの集合としては、$(A_y/L^2, A_y/B, L, A_y/B^2, A_y/B, L)$ と、$(A_y/L^2, A_y/B, L, A_y/B^2, A_y/B, L)$ が考えられる。

一方、定量的な取り扱いが困難と思われる船種については、Fig.3 における A_y/L^2 の分布状態と船種との関係を見ればわかる様に、A_y/L^2 の値で区分することができる。

5. 三角級数係数の回帰式による表示

式 (3.1) の 3 角級数の各係数 C_{z_i}、C_{y_i}、C_{m_i}, ($i = 1 \sim 3$) を、前記の 4 個の水線上船体形状を表すパラメータを説明変数として、線形回帰式で表示する。

各パラメータとこれらの係数との相関関係および各パラメータの分布状態を Table 3 および Fig.4 に示す。Table 3 に、平均値・標準偏差・相関係数を示す。Fig.4 に、三角級数の主要な各係数と特に関係が強いパラメータとの関係を示す。

今回の回帰式では、説明変数として、L/B、X_y/L、A_y/A_s、A_y/L^2 を使用する。この場合、$(A_y/A_s, H_y/H_s)$ の集合の中のいずれを用いても結果に大差がないと、また $(A_y/L^2, A_y/BL, A_y/B^2, A_y/BL)$ の集合においても同様である。後者の集合の中では、A_y/L^2 が有限幅のアスペクト比に相当している事を見考慮して、このパラメータを用いる。

また、各係数の説明変数として、前記の 4 個のパラメータを全て使用する必要はないので、重要度の低いものは回帰式から除去する。

回帰式作成の一例として、C_z の主要成分の係数 C_{z_i} について以下に示す。その説明変数として、L/B、A_y/L^2 および A_y/A_s が考えられる。これらによる回帰式は、その係数を順次増加して行くと次の様に変化する。なお、*印は推定値である事を示す。

(1) 単項の場合

$$
C_{z_1} = 1.82 - 0.128 (L/B) \\
C_{z_2} = 1.221 - 5.032 (A_y/L^2)
$$

126
Table 3 Correlation coefficient, mean value and deviation

<table>
<thead>
<tr>
<th></th>
<th>MEAN</th>
<th>DEV.</th>
<th>L/B</th>
<th>Ay/ax</th>
<th>Ax/BL</th>
<th>Ax/B²</th>
<th>Ay/BL</th>
<th>Ay/L²</th>
<th>Hy/Hx</th>
<th>Xg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/B</td>
<td>7.410</td>
<td>0.600</td>
<td>*</td>
<td>0.300</td>
<td>0.329</td>
<td>0.418</td>
<td>0.129</td>
<td>-0.176</td>
<td>-0.262</td>
<td>-0.265</td>
</tr>
<tr>
<td>Ay/ax</td>
<td>4.515</td>
<td>0.799</td>
<td>*</td>
<td>0.329</td>
<td>0.437</td>
<td>0.511</td>
<td>0.791</td>
<td>0.667</td>
<td>0.820</td>
<td>-0.535</td>
</tr>
<tr>
<td>Ax/BL</td>
<td>0.109</td>
<td>0.024</td>
<td>*</td>
<td>0.110</td>
<td>0.437</td>
<td>*</td>
<td>0.909</td>
<td>0.839</td>
<td>0.403</td>
<td>-0.443</td>
</tr>
<tr>
<td>Ax/B²</td>
<td>0.304</td>
<td>0.188</td>
<td>0.418</td>
<td>0.511</td>
<td>0.909</td>
<td>*</td>
<td>0.849</td>
<td>0.718</td>
<td>0.318</td>
<td>-0.514</td>
</tr>
<tr>
<td>Ay/BL</td>
<td>0.512</td>
<td>0.168</td>
<td>0.129</td>
<td>0.791</td>
<td>0.890</td>
<td>0.849</td>
<td>*</td>
<td>0.950</td>
<td>0.763</td>
<td>-0.544</td>
</tr>
<tr>
<td>Ay/L²</td>
<td>0.069</td>
<td>0.024</td>
<td>-0.176</td>
<td>0.667</td>
<td>0.889</td>
<td>0.718</td>
<td>0.950</td>
<td>*</td>
<td>0.820</td>
<td>-0.466</td>
</tr>
<tr>
<td>Hy/Hx</td>
<td>0.625</td>
<td>0.105</td>
<td>-0.262</td>
<td>0.820</td>
<td>0.933</td>
<td>0.318</td>
<td>0.763</td>
<td>0.826</td>
<td>*</td>
<td>-0.403</td>
</tr>
<tr>
<td>Xg/L</td>
<td>0.517</td>
<td>0.035</td>
<td>-0.365</td>
<td>-0.555</td>
<td>-0.443</td>
<td>-0.514</td>
<td>-0.504</td>
<td>-0.666</td>
<td>-0.403</td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CKx</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKx</td>
<td>0.055</td>
<td>0.059</td>
<td>-0.031</td>
<td>0.265</td>
<td>0.251</td>
<td>0.174</td>
<td>0.313</td>
<td>0.356</td>
<td>0.321</td>
<td>0.124</td>
</tr>
<tr>
<td>CKx</td>
<td>0.871</td>
<td>0.259</td>
<td>-0.333</td>
<td>-0.445</td>
<td>-0.490</td>
<td>-0.575</td>
<td>-0.580</td>
<td>-0.475</td>
<td>-0.259</td>
<td>0.375</td>
</tr>
<tr>
<td>CKx</td>
<td>-0.054</td>
<td>0.064</td>
<td>0.458</td>
<td>-0.117</td>
<td>-0.422</td>
<td>-0.187</td>
<td>-0.360</td>
<td>-0.598</td>
<td>-0.403</td>
<td>0.329</td>
</tr>
<tr>
<td>CKx</td>
<td>-0.025</td>
<td>0.081</td>
<td>-0.053</td>
<td>0.633</td>
<td>0.162</td>
<td>0.119</td>
<td>0.472</td>
<td>0.459</td>
<td>0.631</td>
<td>-0.323</td>
</tr>
<tr>
<td>CKx</td>
<td>-0.007</td>
<td>0.042</td>
<td>-0.307</td>
<td>0.285</td>
<td>-0.120</td>
<td>-0.232</td>
<td>0.076</td>
<td>0.140</td>
<td>0.418</td>
<td>0.187</td>
</tr>
<tr>
<td>CKx</td>
<td>-0.070</td>
<td>0.044</td>
<td>-0.286</td>
<td>0.558</td>
<td>0.102</td>
<td>-0.012</td>
<td>0.156</td>
<td>0.295</td>
<td>0.235</td>
<td>0.239</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CVx</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVx</td>
<td>0.948</td>
<td>0.184</td>
<td>-0.116</td>
<td>0.540</td>
<td>0.693</td>
<td>0.484</td>
<td>0.577</td>
<td>0.709</td>
<td>0.638</td>
<td>-0.270</td>
</tr>
<tr>
<td>CVx</td>
<td>-0.002</td>
<td>0.022</td>
<td>0.047</td>
<td>0.203</td>
<td>0.311</td>
<td>0.296</td>
<td>0.296</td>
<td>0.292</td>
<td>0.213</td>
<td>-0.225</td>
</tr>
<tr>
<td>CVx</td>
<td>-0.009</td>
<td>0.052</td>
<td>0.428</td>
<td>0.332</td>
<td>0.469</td>
<td>0.586</td>
<td>0.477</td>
<td>0.351</td>
<td>0.115</td>
<td>-0.372</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cm1</th>
<th>Cm1</th>
<th>Cm1</th>
<th>Cm2</th>
<th>Cm3</th>
<th>Cm3</th>
<th>Cm3</th>
<th>Cm3</th>
<th>Cm3</th>
<th>Cm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cm1</td>
<td>-0.064</td>
<td>0.308</td>
<td>0.268</td>
<td>0.641</td>
<td>0.593</td>
<td>0.626</td>
<td>0.720</td>
<td>0.659</td>
<td>0.560</td>
<td>-0.778</td>
</tr>
<tr>
<td>Cm2</td>
<td>0.799</td>
<td>0.216</td>
<td>-0.024</td>
<td>0.676</td>
<td>0.671</td>
<td>0.579</td>
<td>0.784</td>
<td>0.794</td>
<td>0.723</td>
<td>-0.440</td>
</tr>
<tr>
<td>Cm3</td>
<td>-0.024</td>
<td>0.067</td>
<td>0.323</td>
<td>0.509</td>
<td>0.269</td>
<td>0.375</td>
<td>0.450</td>
<td>0.347</td>
<td>0.348</td>
<td>-0.737</td>
</tr>
</tbody>
</table>

Fig.3 Correlation between above-water ship form parameters

127
その結果，C_{x1}の説明変数としては，L/B，A_y/L^2のみを用いる．他の係数についても，同様の手順によりその回帰式の形を決める．

以下に，このようなにして求めた各係数の回帰式を示す．

(1) C_xの3角級数係数

$$C_{x0}^* = -0.0358 + 0.925 A_y/L^2 + 0.0521 X_y/L$$
$$C_{x1}^* = 2.58 - 6.087 A_y/L^2 - 0.1735 L/B$$
$$C_{x2}^* = -0.97 + 0.978 X_y/L + 0.0556 L/B$$
$$C_{x3}^* = -0.146 + 0.0728 A_y/A_x - 0.0383 L/B$$
$$C_{x4}^* = 0.0851 + 0.0212 A_y/A_x - 0.0254 L/B$$
$$C_{x5}^* = 0.0318 + 0.287 A_y/L^2 - 0.0164 L/B$$

(5.1)

(2) C_yの3角級数係数

$$C_{y0}^* = 0.509 + 4.904 A_y/L^2 + 0.023 A_y/A_x$$
$$C_{y1}^* = 0.0208 + 0.230 A_y/L^2 - 0.075 X_y/L$$
$$C_{y2}^* = -0.352 + 0.943 A_y/L^2 + 0.0381 L/B$$

(5.2)

(3) C_mの3角級数係数

$$C_{m1}^* = 2.65 + 4.634 A_y/L^2 - 5.876 X_y/L$$
$$C_{m2}^* = 0.105 + 5.306 A_y/L^2 + 0.0704 A_y/A_x$$
$$C_{m3}^* = 0.616 - 1.474 X_y/L + 0.0161 L/B$$

(5.3)

上記の回帰式による三角級数係数の推定値と実験結果を近似した三角級数係数との比較を，Table 4-(1/2)，(2/2)に示す．

表中のRMSEは，各係数における平方平均2乗誤差の平方根であり，各回帰式による推定の精度および3角級数による近似の精度を示す．

この結果から，正負の風圧抵抗についてはC_{x1}，側面風圧抵抗についてはC_{y1}，また風圧モーメントについてはC_{m1}が主な3角級数係数であり，各風圧係数をこの3角級数係数の成分だけで表示しても良いほどであること分かる．この主要成分について見ると，回帰式による推定精度は約20%と言える．

Fig.5-(1/4)，(2/4)，(3/4)，(4/4)に，回帰式による風圧係数の推定の例を示す．コンテナ船・貨物船・タンカー・カーカリアについて，夫々Full,Ballast状態での実験結果・実験結果の三角級数近似・回帰式による推定結果を比較して示す．
Table 4-(1/2) Coefficients in Fourier series for S_e

<table>
<thead>
<tr>
<th>S.No.</th>
<th>C_s</th>
<th>C_s*</th>
<th>C_x</th>
<th>C_x*</th>
<th>C_x</th>
<th>C_x*</th>
<th>C_x</th>
<th>C_x*</th>
<th>C_x</th>
<th>C_x*</th>
<th>C_x</th>
<th>C_x*</th>
<th>C_x</th>
<th>C_x*</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-01</td>
<td>0.066</td>
<td>0.067</td>
<td>0.852</td>
<td>0.902</td>
<td>-0.015</td>
<td>-0.015</td>
<td>-0.004</td>
<td>-0.004</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>L-02</td>
<td>0.065</td>
<td>0.066</td>
<td>0.85</td>
<td>0.901</td>
<td>-0.014</td>
<td>-0.014</td>
<td>-0.004</td>
<td>-0.004</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>L-03</td>
<td>0.056</td>
<td>0.057</td>
<td>0.787</td>
<td>0.842</td>
<td>-0.013</td>
<td>-0.013</td>
<td>-0.003</td>
<td>-0.003</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>L-04</td>
<td>0.053</td>
<td>0.054</td>
<td>0.746</td>
<td>0.782</td>
<td>-0.012</td>
<td>-0.012</td>
<td>-0.002</td>
<td>-0.002</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>L-05</td>
<td>0.056</td>
<td>0.057</td>
<td>0.716</td>
<td>0.767</td>
<td>-0.011</td>
<td>-0.011</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>L-06</td>
<td>0.056</td>
<td>0.057</td>
<td>0.686</td>
<td>0.737</td>
<td>-0.011</td>
<td>-0.011</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>L-07</td>
<td>0.110</td>
<td>0.111</td>
<td>0.753</td>
<td>0.803</td>
<td>-0.010</td>
<td>-0.010</td>
<td>-0.000</td>
<td>-0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>L-08</td>
<td>0.093</td>
<td>0.094</td>
<td>0.719</td>
<td>0.769</td>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.009</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>L-09</td>
<td>0.086</td>
<td>0.087</td>
<td>0.686</td>
<td>0.736</td>
<td>-0.008</td>
<td>-0.008</td>
<td>-0.008</td>
<td>-0.008</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>L-10</td>
<td>0.066</td>
<td>0.067</td>
<td>0.649</td>
<td>0.699</td>
<td>-0.007</td>
<td>-0.007</td>
<td>-0.007</td>
<td>-0.007</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>L-11</td>
<td>0.057</td>
<td>0.058</td>
<td>0.617</td>
<td>0.667</td>
<td>-0.006</td>
<td>-0.006</td>
<td>-0.006</td>
<td>-0.006</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>L-12</td>
<td>0.058</td>
<td>0.059</td>
<td>0.679</td>
<td>0.729</td>
<td>-0.005</td>
<td>-0.005</td>
<td>-0.005</td>
<td>-0.005</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>L-13</td>
<td>0.057</td>
<td>0.058</td>
<td>0.646</td>
<td>0.696</td>
<td>-0.005</td>
<td>-0.005</td>
<td>-0.005</td>
<td>-0.005</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>L-14</td>
<td>0.056</td>
<td>0.057</td>
<td>0.615</td>
<td>0.665</td>
<td>-0.004</td>
<td>-0.004</td>
<td>-0.004</td>
<td>-0.004</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 4-(2/2) Coefficients in Fourier series for C_T and C_m

<table>
<thead>
<tr>
<th>S.No.</th>
<th>C_T</th>
<th>C_T*</th>
<th>C_m</th>
<th>C_m*</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-01</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>L-02</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>L-03</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>L-04</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>L-05</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>L-06</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>L-07</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>L-08</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>L-09</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>L-10</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>L-11</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>L-12</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>L-13</td>
<td>1.374</td>
<td>1.374</td>
<td>0.046</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Note: The table continues with more coefficients for C_T and C_m, but the current snippet is limited to 129 characters. For more detailed data, please refer to the full document.
Fig.5-(1/4) Comparison between estimation and measurement (container ship)

Fig.5-(2/4) Comparison between estimation and measurement (cargo ship)
Fig. 5-(3/4) Comparison between estimation and measurement (tanker)

Fig. 5-(4/4) Comparison between estimation and measurement (car carrier)
6. 結言

(1) 任意の形状の船の風圧力を短時間に精度良く推定する方法として、下記を基本とする風圧力係数の推定式を、多様な形状の船の実験結果を基にして導いた。

- 風圧力係数を、相対風向を変数とする三角級数で表示する
- 三角級数の各係数を、水線上船体形状を表すパラメータ A_y/L^2, A_y/A_x, X_y/L, L/B の回帰式で表示する

(2) 上記のパラメータは夫々物理的な意味を持っており、そして上記三角級数の主要な係数である C_{x1}, C_{y1}, C_{m2} と上記パラメータとの間には強い相関があることから、(1) の方法は妥当と考えられる。

(3) (1) の推定式の基になっている 38 の実験結果は多様な形状を持つ船の資料から成り立っているので、本推定式は広範囲の形状の船に適用できる。

謝辞

本論文は、昭和46年の関西造船協会春季講演会において講演されたが、著者の不手際により、関西造船協会誌に掲載されずままになっていた。この間にSR208報告書(1993)に引用される等使われることが多く、また現在見直しても古いから使えないということはなく、今後もその利用価値が有るものと考える。そこで、広く使えるようにしておけば、または協会誌読者の役に立つに違いないと考えて、協会誌への掲載を関西造船協会にお願いした。その結果、今回掲載が実現することになったものです。

ここに至るまでにお世話になった関西造船協会の関係者一同に厚くお礼申し上げます。

参考文献

1) 辻豊治，高石敬史，菅信，佐藤辰二：“船体に働く風圧力に関する模型試験”，船研報告第7巻第5号，1970，P.13
5) 木下昌雄，岡田正次郎：“船体上部構造物の空気抵抗”，船舶 Vol.35.11, 1960, P.101

132