4. 船種ごとの全高(H_{kt})に関する解析

4.1 貨物船

貨物船の全高(H_{kt})データの分布図を図 21-1 に示す. 次 に±2σを超える領域のデータを排除するための片対数 回帰分析による結果を図 21-2 に示す. さらに, ±2σを 超える領域を排除した後の解析対象データに対して片対 数回帰分析手法を適用して得られた回帰分析の結果を図 21-3 に示す. この図での DWT の対数表示を真数として 表示した結果を図 21-4 に示す. この図 21-3, 4 ではカバ ー率 50%, 75%, 95%の回帰式の結果を表示していると ともに,図 21-3 では決定係数の値(0.887)と各カバー 率の回帰式の係数を併せて示す.この図 21-4 から貨物船 に関しては有意な回帰式が得られていると判断できる.

したがって、ここで得られた回帰式をもとに「技術基 準」と同様に設定した船階級に対応したカバー率 50%、 75%、95%の全高の値について算定した結果を表4に示 す.

図 21-1 H_{kt}データの分布状況 (貨物船)

載貨重量トン数DWT	50%	75%	95%
(トン)	(m)	(m)	(m)
1,000	20.2	22.3	25.4
2,000	24.8	26.9	30.0
3,000	27.5	29.6	32.6
5,000	30.8	33.0	36.0
10,000	35.4	37.5	40.6
12,000	36.6	38.7	41.8
18,000	39.3	41.4	44.5
30,000	42.7	44.8	47.9
40,000	44.6	46.7	49.8
55,000	46.7	48.8	51.9
70,000	48.3	50.4	53.5
90,000	49.9	52.1	55.1
120,000	51.8	54.0	57.0
150,000	53.3	55.4	58.5

表4 全高(H_{kt})の解析結果(貨物船)

図 21-3 H_{kt}-片対数回帰分析の結果①:±2 σ 超データの排除後(貨物船)

図 21-4 H_{kt}-片対数回帰分析の結果②:±2 σ 超データの排除後(貨物船)

4.2 コンテナ船

コンテナ船の全高(H_{kt})データの分布図を図 22-1 に示 す.次に±2σを超える領域のデータを排除するための片 対数回帰分析による結果を図 22-2 に示す. さらに, ±2 σを超える領域を排除した後の解析対象データに対して 片対数回帰分析手法を適用して得られた回帰分析の結果 を図 22-3 に示す. この図での DWT の対数表示を真数と して表示した結果を図 22-4 に示す. この図 22-3,4 では カバー率 50%,75%,95%の回帰式の結果を表示してい るとともに、図 22-3 では決定係数の値(0.842) と各カ バー率の回帰式の係数を併せて示す.この図 22-4 からコ ンテナ船に関しては有意な回帰式が得られていると判断 できる.

したがって、ここで得られた回帰式をもとに「技術基準」と同様に設定した船階級に対応したカバー率 50%、75%、95%の全高の値について算定した結果を表5に示す.

図 22-1 H_{kt}データの分布状況 (コンテナ船)

載貨重量トン数DWT	50%	75%	95%
(トン)	(m)	(m)	(m)
10,000	40.5	42.5	45.4
20,000	46.6	48.6	51.5
30,000	50.1	52.1	55.0
40,000	52.6	54.6	57.5
50,000	54.5	56.5	59.4
60,000	56.1	58.1	61.0
100,000	60.5	62.5	65.4

表5 全高(H_{kt})の解析結果(コンテナ船)

図 22-3 H_{kt}-片対数回帰分析の結果①:±2 σ 超データの排除後(コンテナ船)

図 22-4 H_{kt}-片対数回帰分析の結果②:±2σ超データの排除後(コンテナ船)

4.3 タンカー

タンカーの全高(H_{kt})データの分布図を図 23-1 に示す. 次に±2σを超える領域のデータを排除するための片対 数回帰分析による結果を図 23-2 に示す. さらに, ±2σ を超える領域を排除した後の解析対象データに対して片 対数回帰分析手法を適用して得られた回帰分析の結果を 図 23-3 に示す. この図での DWT の対数表示を真数とし て表示した結果を図 23-4 に示す. この図 23-3,4 ではカ バー率 50%,75%,95%の回帰式の結果を表示している とともに,図 23-3 では決定係数の値(0.850) と各カバ ー率の回帰式の係数を併せて示す.この図 23-4 からタン カーに関しては有意な回帰式が得られていると判断できる.

したがって、ここで得られた回帰式をもとに「技術基 準」と同様に設定した船階級に対応したカバー率 50%、 75%、95%の全高の値について算定した結果を表6に示 す.

なお,タンカーに関する**表 6**では,±2σを超える領域 のデータを排除した後の解析対象データとなる 50,000DWT以上のみを表示している.

図 23-1 H_{kt}データの分布状況 (タンカー)

載貨重量トン数DWT	50%	75%	95%
(トン)	(m)	(m)	(m)
50,000	39.1	41.1	44.1
70,000	43.9	45.9	48.9
90,000	47.5	49.5	52.4
100,000	49.0	51.0	53.9
150,000	54.8	56.8	59.7
300,000	64.7	66.7	69.6

表6 全高(H_{kt})の解析結果(タンカー)

図 23-3 H_{kt}-片対数回帰分析の結果①:±2σ超データの排除後(タンカー)

図 23-4 H_{kt}-片対数回帰分析の結果②:±2 σ 超データの排除後(タンカー)

4.4 RORO 船

RORO 船の全高(H_{kt})データの分布図を図 24-1 に示す. 次に±2σを超える領域のデータを排除するための片対 数回帰分析による結果を図 24-2 に示す. さらに, ±2σ を超える領域を排除した後の解析対象データに対して片 対数回帰分析手法を適用して得られた回帰分析の結果を 図 24-3 に示す. この図での DWT の対数表示を真数とし て表示した結果を図 24-4 に示す. この図 24-3,4 ではカ バー率 50%,75%,95%の回帰式の結果を表示している とともに,図 24-3 では決定係数の値(0.797)と各カバ 一率の回帰式の係数を併せて示す. この図 24-4 から RORO 船に関しては有意な回帰式が得られていると判断 できる.

したがって、ここで得られた回帰式をもとに「技術基準」と同様に設定した船階級に対応したカバー率 50%、 75%、95%の全高の値について算定した結果を表7に示 す.

図 24-1 H_{kt}データの分布状況 (RORO 船)

総トン数 GT (トン)	50% (m)	75% (m)	95% (m)
3,000	28.5	31.7	36.3
5,000	32.4	35.6	40.2
10,000	37.7	40.9	45.5
20,000	42.9	46.1	50.7
40,000	48.2	51.4	56.0
60,000	51.3	54.5	59.1

表7 全高(H_{kt})の解析結果(RORO船)

図 24-3 H_{kt}-片対数回帰分析の結果①:±2 σ 超データの排除後(RORO 船)

図 24-4 H_{kt}-片対数回帰分析の結果②: ±2 σ 超データの排除後(RORO 船)

4.5 PCC 船

PCC 船の全高(H_{kt})データの分布図を図 25-1 に示す. 次に±2σを超える領域のデータを排除するための片対 数回帰分析による結果を図 25-2 に示す. さらに, ±2σ を超える領域を排除した後の解析対象データに対して片 対数回帰分析手法を適用して得られた回帰分析の結果を 図 25-3 に示す. この図での DWT の対数表示を真数とし て表示した結果を図 25-4 に示す. この図 25-3,4 ではカ バー率 50%,75%,95%の回帰式の結果を表示している とともに,図 25-3 では決定係数の値(0.746)と各カバ ー率の回帰式の係数を併せて示す.この図 25-4 から PCC 船に関しては有意な回帰式が得られていると判断できる.

したがって、ここで得られた回帰式をもとに「技術基 準」と同様に設定した船階級に対応したカバー率 50%、 75%、95%の全高の値について算定した結果を表8に示 す.

図 25-1 H_{kt}データの分布状況 (PCC 船)

総トン数 GT	50%	75%	95%
(トン)	(m)	(m)	(m)
3,000	26.9	29.6	33.5
5,000	30.8	33.5	37.3
12,000	37.4	40.1	44.0
20,000	41.3	44.0	47.8
30,000	44.4	47.0	50.9
40,000	46.5	49.2	53.1
60,000	49.6	52.3	56.2

表8 全高(H_{kt})の解析結果(PCC船)

図 25-3 H_{kt}-片対数回帰分析の結果①:±2 σ 超データの排除後(PCC 船)

図 25-4 H_{kt}-片対数回帰分析の結果②:±2σ超データの排除後(PCC 船)

4.6 LPG 船

LPG 船の全高(H_{kt})データの分布図を図 26-1 に示す. 次に±2 σ を超える領域のデータを排除するための片対 数回帰分析による結果を図 26-2 に示す.さらに,±2 σ を超える領域を排除した後の解析対象データに対して片 対数回帰分析手法を適用して得られた回帰分析の結果を 図 26-3 に示す.この図での DWT の対数表示を真数とし て表示した結果を図 26-4 に示す.この図 26-3,4 ではカ バー率 50%,75%,95%の回帰式の結果を表示している とともに、図 26-3 では決定係数の値(0.928)と各カバ 一率の回帰式の係数を併せて示す.この図 26-4 から LPG 船に関しては有意な回帰式が得られていると判断できる. したがって,ここで得られた回帰式をもとに「技術基準」 と同様に設定した船階級に対応したカバー率 50%,75%, 95%の全高の値について算定した結果を**表**9 に示す.

図 26-1 H_{kt}データの分布状況 (LPG 船)

総トン数 GT	50%	75%	95%
(トン)	(m)	(m)	(m)
3,000	29.8	31.2	33.3
5,000	33.5	34.9	37.0
10,000	38.4	39.8	41.9
20,000	43.4	44.8	46.9
30,000	46.3	47.7	49.8
40,000	48.3	49.8	51.8
50,000	49.9	51.3	53.4

表9 全高(H_{kt})の解析結果(LPG船)

図 26-3 H_{kt}-片対数回帰分析の結果①:±2 σ 超データの排除後(LPG 船)

図 26-4 H_{kt}-片対数回帰分析の結果②:±2 σ 超データの排除後(LPG 船)

4.7 LNG 船

LNG 船の全高(H_{kt})データの分布図を図 27-1 に示す. 次に±2σを超える領域のデータを排除するための片対 数回帰分析による結果を図 27-2 に示す.なお,50,000GT 以下の船舶はデータ数が少ないため排除した.さらに, ±2σを超える領域を排除した後の解析対象データに対 して片対数回帰分析手法を適用して得られた回帰分析の 結果を図 27-3 に示す.この図での DWT の対数表示を真 数として表示した結果を図 27-4 に示す.この図 27-3,4 ではカバー率 50%,75%,95%の回帰式の結果を表示し ているとともに,図 27-3 では決定係数の値(0.183)と 各カバー率の回帰式の係数を併せて示す.ここでは,他 の船種と異なり決定係数は低いもののこの領域での特性 は反映されていると考えられる.

したがって、ここで得られた回帰式をもとに「技術基準」と同様に設定した船階級に対応したカバー率 50%、75%、95%の全高の値について算定した結果を表 10 に示す.

図 27-1 H_{kt}データの分布状況 (LNG 船)

表 10 全高(H_{kt})の解析結果(LNG 船)

総トン数 GT (トン)	50% (m)	75% (m)	95% (m)
80,000	54.0	58.3	64.5
100,000	60.9	65.2	71.5
120,000	66.6	70.9	77.1

図 27-3 H_{kt}-片対数回帰分析の結果①:±2 σ 超データの排除後(LNG 船)

図 27-4 H_{kt}-片対数回帰分析の結果②:±2σ超データの排除後(LNG 船)

4.8 旅客船

旅客船の全高(H_{kt})データの分布図を図 28-1 に示す. 次 に±2σを超える領域のデータを排除するための片対数 回帰分析による結果を図 28-2 に示す. さらに、±2σを 超える領域を排除した後の解析対象データに対して片対 数回帰分析手法を適用して得られた回帰分析の結果を図 28-3 に示す. この図での DWT の対数表示を真数として 表示した結果を図 28-4 に示す. この図 28-3,4 ではカバ ー率 50%, 75%, 95%の回帰式の結果を表示していると ともに,図 28-3 では決定係数の値(0.799)と各カバー 率の回帰式の係数を併せて示す.この図 28-4 から旅客船 に関しては有意な回帰式が得られていると判断できる.

したがって、ここで得られた回帰式をもとに「技術基 準」と同様に設定した船階級に対応したカバー率 50%, 75%,95%の全高の値について算定した結果を表 11 に示 す.

(旅客船)

総トン数 GT	50%	75%	95%
(トン)	(m)	(m)	(m)
3,000	28.2	32.4	38.5
5,000	32.7	36.9	43.0
10,000	38.8	43.1	49.1
20,000	45.0	49.2	55.2
30,000	48.6	52.8	58.8
50,000	53.1	57.3	63.4
70,000	56.1	60.3	66.3
100,000	59.2	63.4	69.5

表11 全高(H_{kt})の解析結果(旅客船)

図 28-3 H_{kt}-片対数回帰分析の結果①:±2 σ 超データの排除後(旅客船)

図 28-4 H_{kt}-片対数回帰分析の結果②:±2 σ 超データの排除後(旅客船)