第7章 位置計測による構造物の監視・変状探知手法の開発

第7章 位置計測による構造物の監視・変状探知手法の開発

7.1 は)	こめに	7-1
7.2 本研	开究のフロー	7-1
7.3 常問	寺監視の対象とすべき損傷箇所と変位置の把握	7-2
7.3.1	東日本大震災における被災状況の調査	
7.3.2	常時監視の対象とすべき損傷箇所と変位置の把握	
7.4 位間	置計測による常時監視のイメージ	7- 11
7.5 常印	寺監視システムの実現可能性の検討	
7.5.1	異常検知に関する現状技術の整理	
7.5.2	GPSセンサー及びCCTVカメラの検知精度の検討	
7.6 画信	象処理システムの試設計	
7.6.1	カメラ及びターゲットの選定	
7.6.2	画像処理手法の概要	
7.6.3	フィールド実験における効果の確認	
7.6.4	画像処理システムによる相対変位の計測及び異常判定の手法	
7.7 画值	象処理システムの実橋における検証	7-41
7.7.1	画像処理システムの実橋における検証	
7.8 G I	PSセンサーによる絶対変位計測の検証	7-54
7.8.1	GPSセンサーによる絶対変位計測の検証	7-54
7.8.2	GPSセンサーによる絶対変位計測における異常判定の手法	
7.9 常問	寺監視システムの概要	
7.9.1	常時監視システムの主要機器・構成	
7.9.2	異常判定及び警報出力の方法	
7.9.3	主な機器の仕様	
7.10 常	時監視システムによる効果の試算	
7.11 今	後の課題	7-77
参考	文献	

第7章 位置計測による構造物の監視・変状探知手法の開発

7.1 はじめに

道路橋の維持管理においては、日常的に行われる道路パトロールや数年毎の定期点検な ど目視を主体とした点検によって、異常の発生や損傷状況などの把握が行われている。し かし、これらの間欠的に行われる点検では、点検が行われていない期間に発生する異常を 道路管理者が速やかに認識することができない。そのため、地震や洪水による被災、船舶 ・車両の衝突による部材の破断のような道路橋の構造や供用の安全性に関わるような重大 な異常を、発生後いかに短い時間で道路管理者が認識できるかが重要な課題となっている。

本研究では、近年の大規模地震による被災事例の分析結果から、道路橋の構造や供用の 安全性に関わる突発的で致命的な変状の特定を行うと共に、その変状を常時監視カメラ(例 : C C T V カメラ)の画像やG P S センサーを用いて迅速かつ簡便に検出するシステムの 実用化の可能性について検討を行った。

写真-7.1.1 突発的で致命的な変状の事例

7.2 本研究のフロー

本研究のフローを図-7.2.1に示す。

7.3 常時監視の対象とすべき損傷箇所と変位量の把握

- 7.3.1 東日本大震災における被災状況の調査
- 7.3.2 常時監視の対象とすべき損傷箇所と変位量の把握

7.4 位置計測による常時監視のイメージ

7.5 常時監視システムの実現可能性の検討

7.5.1 異常検知に関する現状技術の整理

7.5.2 GPSセンサー及びCCTVカメラの検知精度の検討

7.6 画像処理システムの試設計

- 7.6.1 カメラ及びターゲットの選定
- 7.6.2 画像処理手法の概要

7.3 常時監視の対象とすべき損傷箇所と変位量の把握

7.3.1 東日本大震災における被災状況の調査

常時監視の対象とすべき損傷箇所と変位量を把握するため、東日本大震災後に、東北地 方整備局が、震度6弱以上の11路線の橋梁を対象に行った緊急橋梁点検結果を用いて、以 下のとおり橋梁の被災状況を調査した。

1) 調査対象

本研究では、緊急橋梁点検結果(東北地方整備局)に記録されている本線橋・側道橋の 計1,572橋を対象に調査を行った。

(対象橋梁の内訳)

平/欧/同 . 1,10/1同

・側道橋: 415橋 (計1,572橋)

2) 被災の有無

•

調査対象橋梁の被災の有無を、図-7.3.1~図7.3.3に示す。

橋梁全体では、調査対象橋梁の約半数が地震による被災(今回の地震によると思われる 被災で、津波の影響の無いもの)を、約1割が津波による被災を受けており、残りの約4 割の橋梁には被災がなかった。地震による被災は、鋼橋の方がコンクリート橋よりやや多 いものの、地震と津波による被災の割合は、鋼橋・コンクリート橋とも概ね同様であった。

図-7.3.1の結果を、橋梁ごとに地図上にプロットしたものを図-7.3.4に、各橋梁の震度 分布を図-7.3.5に示す。津波による被災を受けた橋梁は、岩手県・宮城県北部の海岸沿い に多く、地震による被災(今回の地震によると思われる被災で、津波の影響の無いもの) を受けた橋梁は、岩手県・宮城県・福島県に多い。なお、岩手県内では、内陸部(一般国 道4号)の被災が南部に多いのに比べて、海岸沿い(一般国道 45 号)では北部まで被災 していた。

図-7.3.4 被災の有無(全体)の位置図

図-7.3.5 各橋梁の震度分布

(注)各橋梁からの直線距離が最小となる最寄りの観測点の最大震度を、各橋梁の最大震度とした。

3) 損傷の箇所別発生率

図-7.3.6~図7.3.8に、津波による被災橋梁を除く1,421橋を対象とした損傷の箇所別発 生率(=損傷箇所数/全損傷箇所数)を示す。橋梁全体では、橋台背面に損傷が発生した橋梁が 521橋(31%)と最も多く、擁壁類:192橋(11%)、伸縮装置:165橋(10%)、支承:117橋(7 %)の損傷の順となっている。橋台背面の損傷は、コンクリート橋:280橋(35%)が鋼橋: 234橋(27%)より多く、支承の損傷は、鋼橋:92橋(11%)がコンクリート橋:21橋(3%)の 約4倍。伸縮装置の損傷は、鋼橋:84橋(10%)がコンクリート橋:76橋(10%)より多い。

図-7.3.6 損傷箇所(全体)(単位:損傷箇所数)

図-7.3.7 損傷箇所 (鋼橋) (単位:損傷箇所数)

※同一橋梁の重複有り

図-7.3.8 損傷箇所(コンクリート橋)(単位:損傷箇所数)※同一橋梁の重複有り

4) 橋台背面の損傷の分析

図-7.3.9に示す橋台背面に発生した段差の規模(橋梁毎の最大段差量(重複無し))と橋 梁数との関係では、2cmの段差が88橋と最多で、10cm以下の段差の発生が多い。また、図-7.3.10に示す段差規模(橋梁毎の最大段差量(重複無し))と震度との関係を見ると、震度 6弱では2cmの段差が最多で、10cm以下の段差の発生が多く、震度5強では3cmの段差が最多 で、6cm以下の段差の発生が多かった。但し、緊急橋梁点検時にすでに応急復旧が行われ ていた場合には、橋台背面の段差が被災として記録されているものと、されていないもの が混在していた。

図-7.3.9 段差規模(橋梁毎の最大段差量(重複無し))と橋梁数との関係

図-7.3.10 段差規模(橋梁毎の最大段差量(重複無し))と震度との関係

5) 橋台背面に発生した段差等による通行規制の事例

表-7.3.1に、1,572橋のうち通行規制の経緯が記録されているものの一覧を示す。あわ せて、通行規制の主要因である橋台背面の段差および伸縮装置の被災状況について示す。 なお、通行規制を伴う復旧を行った橋梁数は少なく、さらに前後の構造物の被災状況との 関連から、当該橋梁の被災状況と規制期間が一致しないものもあった。

橋梁 No.	津波 の影 響	規制内容	規制開始	規制完了(応急復 旧)	規制完了(本復旧)	応急復旧 額(千円)	本復旧額 (千円)	規制日数 (~応急 復旧)	規制日数 (~本復 旧)	段差(車線 部)	段差(路 肩)	段差(歩道 部)	段差(場所 不明)	伸縮装置 ずれ	伸縮装置 段差	伸縮装置 異常な開 き
1	なし	片側交互通行	2011/3/11 14:46	2011/3/12 3:21				1		-	-	110mm	-	-	-	-
2	なし	片側交互通行	2011/3/11 14:46	2011/3/12 3:21				1		-	-	220mm	-	-	-	-
3	なし	通行止め	2011/3/12 17:45	2011/3/17 19:10				5		-	-	-	-	-	-	-
4	なし	通行止め	2011/3/12 17:45	2011/3/17 19:10	0011/4/00.0.00	100		5	41	-	-	-	-	-	-	-
6	おし	月間文旦週行 相制な	2011/3/11 14:40	2011/4/21 0:00	2011/4/22 0:00 +	100	- 1823	40	41	anuna -	-	210mm	-	-	-	-
-	なし	規制なし	2011/3/11 14:46	2011/4/13 0:00	本 2011/6/3 0·00	50	512	32	83	-	-	170mm	-	-	-	-
- i	なし	規制なし	2011/3/11 14:46	2011/4/2 0:00	2011/0/0/0000	20	012	21		-	-	-	-	-	-	-
9	なし	規制なし	2011/3/11 14:46	2011/3/22 0:00	未		300	10		-	-	90mm	-	-	-	-
10	なし	規制なし	2011/3/11 14:46				221			-	-	90mm	-	-	-	-
11	なし	規制なし	2011/3/11 14:46		未		113			-	-	40mm	-	-	-	-
12	なし	規制なし	2011/3/11 14:46	2011/4/1 0:00	2011/5/6 0:00		137	20	55	-	-	60mm	-	-	-	-
13	なし	規制なし	2011/3/11 14:46				2,057			-	150mm	110mm	-	-	-	-
15	171	規制なし	2011/3/11 14:40		2011/5/12 0:00		230		B1	_	_	60mm		_	_	_
16	なし	規制なし	2011/3/11 14:46	2011/3/14 0:00	2011/5/12 0:00		33	2	61	-	-	15mm	-	-	-	-
17	なし	規制なし	2011/3/11 14:46				417			-	-	55mm	-	-	-	-
18	なし	規制なし	2011/3/11 14:46				312			-	-	30mm	-	-	-	-
19	なし	規制なし	2011/3/11 14:46	2011/4/14 0:00	未	20	21,948	33		-	-	130mm	-	-	-	-
20	なし	規制なし	2011/3/11 14:46	0011/4/10.0.00	0011/7/00.0.00	70	378		100	-	60mm	50mm	-	-	-	-
20	なし	通行止め 通行止め	2011/4/7 23:30	2011/4/12 0:00	2011/7/20 0:00	150	0,903	4	103	200mm	200mm	80mm	-	-	_	-
23	なし	通り 正の 担制なし	2011/3/11 14:46	2011/ 4/ 11 0.00	2011/1/20 0.00	130	163	J	105	-	-	70mm	-	-	-	-
24	なし	規制なし	2011/3/11 14:46				56			-	-	25mm	-	-	-	-
25	なし	規制なし	2011/3/11 14:46				101			-	-	25mm	-	-	-	-
26	なし	規制なし	2011/3/11 14:46				206			-	-	-	-	-	-	-
27	なし	規制なし	2011/3/11 14:46							-	-	30mm	-	-	-	-
28	なし	規制なし	2011/3/11 14:46				110			-	-	30mm	-	-	-	-
25	なした	規制なし	2011/3/11 14:40				448			-	-	-	-	-	-	-
31	なし	規制なし	2011/3/11 14:46				440			-	-	-	-	-	-	-
32	なし	規制なし	2011/3/11 14:46							-	-	-	-	-	-	-
33	なし	規制なし	2011/3/11 14:46				54			-	-	-	-	-	-	-
34	なし	規制なし	2011/3/11 14:46	2011/4/14 0:00	2011/4/28 0:00	5	7,815	33	47	-	-	100mm	-	-	-	-
35	なし	規制なし	2011/3/11 14:46							-	-	120mm	-	-	-	-
36	なし	規制なし	2011/3/11 14:46				100			-	-	25mm	-	-	-	-
3/	なした	規制なし	2011/3/11 14:40				122			_	-	20mm	-	-	_	-
39	なし	規制なし	2011/3/11 14:46				28			-	-	-	-	-	-	-
40	なし	規制なし	2011/3/11 14:46				201			-	-	-	-	-	-	-
41	なし	規制なし	2011/3/11 14:46							-	-	20mm	-	-	-	-
42	なし	規制なし	2011/3/11 14:46				321			20mm	-	-	-	-	-	-
43	なし	規制なし	2011/3/11 14:46				206			-	-	-	-	-	-	-
44	なし	規制なし	2011/3/11 14:46				4349			-	-	-	-	_	-	/0mm
40	171	規制なし	2011/3/11 14:40				3020			_	_	- 30mm	-	_	_	-
47	なし	規制なし	2011/3/11 14:46				212			-	-	-	-	-	-	-
48	なし	規制なし	2011/3/11 14:46	2011/4/27 0:00				46		-	-	30mm	-	-	-	-
49	なし	規制なし	2011/3/11 14:46	2011/4/27 0:00				46		-	-	40mm	-	-	-	-
50	なし	規制なし	2011/3/11 14:46				400			-	20mm	-	-	-	-	-
51	なし	規制なし	2011/3/11 14:46				2/6			-	-	-	-	-	-	-
52	1	規制なし	2011/3/11 14:40				090			_	-	- 30mm	_	_	_	_
54	なし	規制なし	2011/3/11 14:46				14281			-	-	-	-	-	-	65mm
55	なし	規制なし	2011/3/11 14:46	2011/4/27 0:00				46		-	-	-	80mm	-	-	-
56	なし	規制なし	2011/3/11 14:46	2011/4/20 0:00	2011/5/20 0:00	50	4933	39	69	100mm	100mm	-	-	-	-	-
57	なし	規制なし	2011/3/11 14:46	2011/4/19 0:00		50	4526	38		-	-	80mm	-	-	-	-
55	はし	死刑なし 相制な	2011/3/11 14:46	2011/4//0:00		20	4,933	26		-	-	-	-	-	-	-
60	なし	通行止め	2011/3/11 14:46		2011/3/12 19:20		10		1	-	-	-	-	-	-	-
61	なし	通行止め	2011/3/11 14:46		2011/3/12 19:20				1	-	-	-	-	-	-	-
62	なし	通行止め	2011/3/11 14:46		2011/3/12 19:20				1	-	-	-	-	-	-	-
63	なし	通行止め	2011/3/11 14:46		2011/3/12 19:20				1	20mm	-	-	-	-	-	-
64	なし	通行止め	2011/3/11 14:46	10011 (0 (10 7))	2011/4/22 0:00				41	-	-	-	-	-	-	-
65	めり	通行止め	2011/3/11 14:46	2011/3/19 /:40	2011/7/6 8:00			8	117	- 60mm	-	-	-	-	-	-
67	あり	通行止め	2011/3/11 14:46		2011/4/4 15:00				24	-	_	_	_	_	_	_
68	あり	通行止め	2011/3/11 14:46		2011/4/4 15:00				24	-	-	-	-	-	-	-
69	あり	通行止め	2011/3/11 14:46		2011/6/26 9:00				107	-	-	-	-	-	-	-
70	あり	通行止め	2011/3/11 14:46		2011/7/10 10:30				121	-	-	-	-	-	-	-
71	あり	通行止め	2011/3/11 14:46	2011/3/25 17:00	2011/4/26 17:00			14	46	-	-	-	-	-	-	-
72	あり	通行止め	2011/3/11 14:46	12011/2/14 12.01	2011/3/25 17:00				14	-	-	-	-	-	-	-
73	あり	通行止め	2011/3/11 14:46	2011/3/14 13:21	2011/4/28 16:00			17	10	-	-	-	20mm		-	_
74	あり	通行止め	2011/3/11 14:40	2011/3/17 20:00	2011/3/19 18:00			17	48	-	-	-	-		-	_
76	aý	通行止め	2011/3/11 14:46	2011/3/23 0:00				11	Ū	-	-	-	-	-	-	-
77	なし	通行止め	2011/3/14 17:10		2011/3/16 16:10				2	-	-	-	-	-	-	-
78	あり	通行止め	2011/3/14 14:52	2011/3/15 18:00	2011/3/20 0:00			1	5	30mm	-	-	-	-	-	-
79	なし	規制なし	2011/3/11 14:46		1					-	-	-	-	-	-	-

表-7.3.1 橋台背面の段差等による通行規制事例

7.3.2 常時監視の対象とすべき損傷箇所と変位量の把握

1) 既往の主な地震による橋台背面の段差量と通行規制の関係

図-7.3.11に、既往の主な地震による橋台背面の段差量と規制日数(応急復旧・本復旧) との関係を整理した結果を示す。応急復旧は、段差量の大小とは関連性が薄く、路線の重 要性等の他要因による影響が大きいと思われる。しかし、規制日数が長いところでは、段 差量が50mmを超えるものが多い。

(注) 図内 "No.**" は表-7.3.1 の「橋梁 No.」に対応している。

2) 地震により支承が損傷した場合の段差量の試算

被災実績だけではデータが少ないため、仮に、1支承線上にある支承が全て地震動により損傷した場合に、一般的な道路橋で発生する段差量を鋼製支承の種別毎に試算した。表 -7.3.2に、標準的と思われる寸法の鋼製支承に種別毎の特徴的な損傷が発生した場合の段 差量(試算値)を示す。

図-7.3.11 橋台背面の段差量と規制日数(応急復旧・本復旧)の整理結果

種別	模式図	段差量算出
線支承	支承高さ 77mm 77mm 4 4 60mm 60mm	地震動により、支承の上沓と下 沓が外れてズレた状態を想定 し、標準的と思われる支承寸法 から支承の沈下量を試算 ⇒発生段差量 60mm
支承版 支承	支承高さ 125mm 125mm 125mm 日 125mm 125mm 日 125mm 日 125mm 日 125mm 日 125mm 日 125mm 日 125mm 日 125mm 日 125mm 日 125mm 日 125mm 日 125mm 日 125mm 125m	地震動により、支承の上沓と下 沓が外れてズレた状態を想定 し、標準的と思われる支承寸法 から支承の沈下量を試算 ⇒発生段差量 50mm
ピン支承	3 支承高さ 310mm 発生段差量 120mm 120mm 120mm	地震動により、支承のピンが外 れ、上沓と下沓がズレた状態を 想定し、標準的と思われる支承 寸法から支承の沈下量を試算 ⇒発生段差量 120mm
ピン ローラー 支承	第生設差量 第生設差量 180mm 180mm	地震動により、支承のローラー が全て外部に逸脱し、上沓と下 沓がズレた状態を想定し、標準 的と思われる支承寸法から支 承の沈下量を試算 ⇒発生段差量 180mm

表-7.3.2 主な鋼製支承別の段差量(試算値)

3) 常時監視の対象とすべき損傷箇所及び変位量のまとめ

既往の主な地震による被災事例では、橋台背面における段差が最も多く、規制期間が長いところでは段差量50mm以上が多い。また、一般的な道路橋の条件で用いられる支承部で、 支承ストッパーの破断、支承モルタルの損傷、これらと関連した伸縮装置の損傷により、 50mm(支承版支承)~60mm(線支承)の段差が発生する可能性が高い。

以上より、支承部の破壊や橋台背面の段差発生により、供用性に懸念のある状況では50 mm以上の段差が生じている場合が多いと考えられ、桁端部(橋台背面を含む。)や掛け違い部における概ね50mm以上の段差を常時監視により検知することが、有効性・必要性の視点から監視の目標として適当と考えられる。 図-7.3.12に、橋梁における常時監視の対象箇所及び損傷状況を示す。

Ē	监視箇所	損傷状況		
桁端部	橋台背面	橋台背面盛土の傾斜、沈下		
	橋台部 (伸縮部)	桁の横ずれ、段差、開き		
掛け違い部	掛け違い部(伸縮部)	桁の横ずれ、段差、開き		

図-7.3.12 橋梁における常時監視の対象箇所及び損傷状況

7.4 位置計測による常時監視のイメージ

本研究で開発するシステムは、地震等の発生直後に、道路管理者が、被災状況の把握、 応急復旧等の対応に利用することを想定していることから、その性能目標を以下のように 設定した。

- ・橋梁の突発的・致命的変状を、迅速・簡便に検知することができる。
- ・常時監視の対象箇所は、桁端部(橋台背面を含む。)や掛け違い部とし、検知する 変位量は5cm以上とする。
- ・既存のCCTVカメラと一般的なGPS技術を活用できるものとする。(特化した) 目的に、新たなインフラ整備をできるだけ伴わない。)
- ・できるだけ陳腐化しないために、既存の道路施設を可能な範囲で有効に活用する。

本システムのイメージ図を、図-7.4.1に示す。遠隔地(例:国道事務所等)においても、 CCTVカメラやGPSセンサーにより、橋台背面の段差や橋桁のズレ等を迅速に検知、 変位量を判定し、速やかな応急復旧等の対応を可能にすることを想定している。

図-7.4.1 位置計測による常時監視のイメージ

7.5 常時監視システムの実現可能性の検討

ここでは、車両の通行に支障をきたす橋梁の桁端部(橋台背面含む)及び掛け違い部で発生 する5cm以上の変位量を検知できる常時監視システムの実現可能性について検討を行った。

7.5.1 異常検知に関する現状技術の整理

1) 異常検知に関する現状技術の整理

表-7.5.1に、平成23年度当時に調査した結果、得られた常時監視による異常検知に関する現 状技術の整理結果を示す。橋梁の桁端部(橋台背面含む)及び掛け違い部における車両の通行 に支障をきたす異常の判定手法としては、GPSセンサーを用いて計測した変位量や座標デー タなどを基に絶対位置データとして判定する手法、距離計や変位計を用いて計測された変位量 やCCTVカメラなどを用いて計測した画像情報をもとに解析を行うことで相対位置データと して判定する手法、が想定される。

適用技術		GPSを用いた監視			╷┈╫┈距鄭計	0011/画角韶长	1	トータルステーション	「日本計測」		
評価	項目	単独測位	キネマティック測位	スタティック測位	一	超百波セノサー	レーサー距離計	UCTV凹1家胜机		(自動計測)) 与具訂測
	概要	GPS電波をスペクト ル拡散する擬似雑音 コードの伝搬遅れを 計測して、GPS衛星 からの距離を求めて 受信機の位置を求め る。	固定基準局と移動 局を設置し、受信機 から衛星までの距離 を搬送波の波数と位 相差を計測する干 渉測位方式。	静止測量。搬送波 の位相を利用し、地 盤など短時間では 動かない静止点に 適用する干渉測位 方式。	測距儀から測点に 設置した反射プリズ ムに向けて発振した 光波を発射し、反射 プリズムで反射した 光波を測距儀が感 知するまでに発振し た回数から距離を 得る。	超音波センサーを 用いた位置測定 センサヘッドから超 音波を発信し、対象 物で反射してくる超 音波の発信から受 信までの時間を計 測することで距離を 測定する。	レーザー距離計は、 目標物にレーザー 光を照射し反射して 戻ってくる時間から 目標物までの距離 を測定する。その 際、測定精度を高め るため0.5秒という短 時間の間に何百回 も照射を行う。	ハイビジョンカメラや 工業用監視カメラと して使用しているビ デオカメラ等を利用 した画像解析による モニタリング	発射されたレーザが 物体に反射して戻っ てくるまでの時間を距 離に換算することに より、地形・地物をあ るがままの状態で3 次元(X,Y,Z)計測す る。	3次元自動追尾トー タルステーション(以 下APL-1と称す)によ る計測する。 また、各測点を測量 して水平変位と鉛直 変位を求める自動測 量システムを導入す る。	対象物を撮影した画 像をデジタル信号に 変換し、種々の演算 処理を行なうことで、 対象物の面積、長 さ、個数、位置などを 検出する。
	特徴	 ・一つの受信機で測 位する ・測定精度がやや悪 い 	・リアルタイムな移動 局の測位を算出	・高精度な観測が可 能	 ・軽量化 ・データ精度が高い ・測定作業の能率がよい 	・機器構成が簡易	・直線距離、水平距 離、高低差の測定 が可能	・リアルタイムなモニ タリングが可能 ・デジタルデータ化し た画像解析が可能	 ・全方向を測定可能 ・明暗の影響を受けない 	・3次元データの取得 が可能	 ・計測対象を瞬時に 複数点計測が可能 ・画像解析の自動化
無ノ	人遠隔監視	適 (無人計測)	適 (無人計測)	適 (無人計測)	不適 (有人計測)	不適 (有人計測)	適 (無人計測)	適 (無人計測)	不適 (有人計測)	適 (無人計測)	不適 (撮影必要)
リア	ルタイム性	高 (瞬時判断可能)	高 (瞬時判断可能)	高 (瞬時判断可能)	中~高 (測定結果の処理が 必要)	高 (瞬時判断可能)	高 (瞬時判断可能)	高 (目視必要)	低 (解析必要)	中~高 (計測頻度 : 1回/h)	低 (解析必要)
浿	則定精度	10m	cm	mm	mm	cm	mm	mm~cm (目視レベル)	cm	cm	cm、m
位	云送手段	有線 無線	有線 無線	有線 無線	無線	_	無線	有線	_	有線 無線	_
IJ	見地電源	必要	必要	必要	必要	必要	必要	必要	必要	必要	不要
精度	度低下要因	衛星補足数 気象条件	衛星補足数 気象条件	衛星補足数 気象条件	測定対象物の反射 気象条件	音速は気温で変化	測定対象面の材質 環境条件	夜間監視(照明)	人的作業	気象条件	測定範囲 (レンズひずみ)
-	レベル1: 1m程度	Δ	0	Δ	Δ	Δ	0	0	Δ	0	Δ
帘 時	レベル2: 5cm程度	×	0	Δ	Δ	Δ	0	\triangle or \bigcirc ?	Δ	0	Δ
観 測	備考			データ取得が数時 間毎	機器⊐ストが高価	常時監視するため には別途、伝送シス テム等を導入検討 する必要がある。	常時監視するため には別途、伝送シス テム等を導入検討 する必要がある。	常時監視するために は別途、伝送システ ム等を導入検討する 必要がある。	機器⊐ストが高価	リアルタイム性が課 題 機器コストが高価	リアルタイム性が課 題
糸	総合評価		0				0	○ or △ (検証必要)			

表-7.5.1 異常検知に関する現状技術の整理結果

2) 絶対位置データにより検知する方法

絶対位置を計測する方法としてGPSセンサーによる監視方法が想定され、その測定方 式としては、単独測位方式、キネマティック測位方式、スタティック測定方式などがある が、必要とされる測定精度や設置コストの面からキネマティック測位方式が候補案として 挙げられる。表-7.5.2に、平成23年度当時に調査した結果、得られたキネマティック測位 の概要を示す。

項目	内容					
測位方式	キネマティック測位方式					
概要	搬送波の位相を利用し移動体に適用する干渉測位方式					
	3次元ベクトル 国上向 移動 二 未知点2 未知点1					
データ処理方式	干渉測位において、基準地点に1台の受信機を固定し、 もう1台の受信機は多数の未知地点を1点あたり数秒 から数分の測定で順次測量する					
計測精度	1cm~数 cm					
計測頻度	数秒に一度					
開放空間の方位	全方位					
ビル陰	ビル陰では、衛星が捕捉しずらく、GPS 測位精度が低下 する					
主な利用用途	農業機械や土木機械などの自動操縦、市街地の測量、港 湾や水路測位などの精密測量					
その他	求点上での観測時だけでなく、移動時においても衛星からの信号を受信し、位相の同期を維持し続けなければならない。					
	項 目 測位方式 概要 第次の理方式 計測精度 計測頻度 計測頻度 計測頻度 計測頻度 計測頻度 計測 子の他					

表-7.5.2 キネマティック測位(概要)

3) 相対位置データより検知する方法

表-7.5.3に、CCTVカメラの画像解析により検知する方法の概要を示す。

	画像解析による検知方法									
	予め設置したマーカーや段差部等の変状を監視する方法									
概要	段差が発生する恐れのある箇所の映像を直接監視する方法のほか、周辺に自発									
	光のマーカー等を設置し、段差発生時の変状(段差部の映像やマーカーを結ぶ									
	線データなど)を監視・解析することで段差発生による異常を検知する。									
検知方法の	析端部(常時) 析端部(段差発生時)									
イメージ	自発光マーカー等									
変状検知	・段差部の断面映像									
の根拠	 ・事前に設置したマーカー(夜間は自発光するもの)を結ぶ線データの挙動 									
	等									
現状での導	・マーカーの移動量を求めることができれば、定量的に判定可能と推測される									
入の可能性	・カメラと基本となる解析ソフトのエンジン技術は存在するが、 段差部の解析									
	処理技術(カスタマイズ部分)は、新たに開発・構築する必要がある。									
評価	・平成23年度の調査時点では、本研究のような段差発生など全体の風景の中で									
	静的な画面の変化に着目し、画像処理により定量的な変位量を判別する方法は									
	ないため、新たな処理手法を確立する必要がある									

表-7.5.3 画像解析による検知方法の概要

7.5.2 GPSセンサー及びCCTVカメラの検知精度の検討

ここでは、地震等の発生により、桁端部または掛け違い部における段差(目標5cm)を 検知できるか、GPSセンサーおよびCCTVカメラによる検知の実現可能性について検 討を行った。

1) GPSセンサー

現地でキネマティック測位方式のGPSセンサーを移動させ、測定値(1秒周期)から 求まる変位量と実際の移動量との対比を行った。表-7.5.4に、GPSセンサーを高さ方向 に5cm移動させた後の測定データの測位経過時間毎の平均値を示す。データ測位経過時間 毎の平均値は概ね1~2cmの誤差を含んでいたが、計測値に対してフィルタ処理を行うこと により変位量5cmレベルの検知を行うことは可能性と思われる。

表-7.5.4 GPSセンサー(高さ方向5cmの移動前後)のデータ測位経過時間毎の平均値

移動	データ測位経過時間ごとの平均値[cm]							
方向	60s	90s	300s	900s	1hour	全データ		
高さ方向	3.98	4.46	7.86	6.80	6.92	5.87		

2) CCTVカメラ

写真-5.1に、ターゲット(製品名:ガイドフラッシュ)を現地に設置し、当該ターゲットを高さ方向に5cm移動して、その移動前後の画像をデジタルカメラ(190万画素)で撮影した状況を示す。その移動前後の撮影画像を差分処理かつモザイク処理し、実際の移動量と画像処理から求めた変位量とを対比した。

写真-5.1の画像は、190万画素のカメラによる撮影画像(カメラからの撮影距離が約12m) であり、画像処理した結果、8ピクセルの変位量が確認できたため変位量を56mmと推定し た例である。画像処理では、輪郭の強調やノイズ除去等の処理を施すため1~2画素分を 誤差として扱う必要があるが、この結果から、カメラの撮像素子や画素数、設置位置等の 要素を適切にすれば、デジタルカメラの画素数に対応した解像度とカメラと対象物との距 離や角度などの幾何学的な位置関係から推定できる精度で移動量を検知できることが確認 された。(この例では、高さ方向の変位量5cmを計測することが可能であることを確認し た。)

なお、本研究時点では、国土交通省が道路管理用に配備している一般的なCCTVカメ ラの仕様は38万画素程度のカメラであるため、190万画素のカメラに比べ1ピクセルあた りの撮影画像が粗くなることから、変位量を精度良く検知するためには、カメラからター ゲットまでの撮影距離を視認可能な地点まで短くするか、高解像度のカメラに改善する等 の対応が必要になると思われる。なお、カメラの高解像度化は急速に進みつつあり、本研 究の方式による検知精度は今後急速に向上できると考えられる。

写真-7.5.1 ターゲット移動前後(高さ方向)の対比

7.6 画像処理システムの試設計

桁端部(橋台背面を含む。)及び掛け違い部の変状を検知可能なカメラ、ターゲット、 画像処理手法を抽出し、フィールド実験により効果の確認を行い、その結果を踏まえて画 像処理システムの試設計を行った。

7.6.1 カメラ及びターゲットの選定

1) カメラの選定

(1) 主なカメラの性能

表-7.6.1に、平成24年度当時に調査した結果、得られた画像処理システムに使用可能と思われるカメラの例を示す。なお、可視画像以外に赤外線カメラによる方法も考えられるが、 遠赤外線のサーモグラフィカメラは熱検知用のカメラであり、現時点ではコストが高く解像 度も悪いため、対象から除いている。通常のデジタルカメラは、近赤外線に対して一定の感 度があり、赤外線を強調するために可視光をカットする赤外線フィルタを装着することで、 赤外線ターゲット撮影用に利用することは可能である¹⁾。

(2) カメラの選定

表-7.6.2に、画像処理システムに使用するカメラの選定条件を示す。

項目	カメラ条件	理由
画素数	0	国土交通省の道路管理用カメラは要求精度
	高画素数(ハイビジョ	を検知できる範囲が狭い。常時監視システ
	ンビデオカメラかデ	ムでは、出来るだけ広範囲を監視する必要
	ジタルカメラ)	がある。これを可能にするため、高画素が
		要求される。
ズーム率	0	カメラをズームすることにより、精度の高
	現行道路管理用カメ	い監視範囲の広いシステムを構築すること
	ラ以上のズーム率を	ができる。
	有する	
赤外線の	\bigtriangleup	赤外線ターゲットを採用した場合は、赤外
感度		線に対して高い感度のカメラを採用するこ
		とが望ましい。
フレーム	\bigtriangleup	常時監視システムで利用する画像の枚数は
数	条件としない。	少なく、最大1秒間2枚程度(画像の2値
		化差分処理方式を採用した場合)を撮影可
		能なカメラを選定することが望ましい。
カメラ素	×	CMOS が近年の主流になっているが、CCD よ
子	条件としない。	り性能面では有利であることを示していな
		k Vo
カメラ感	×	カメラ感度については、常時監視システム
度	条件としない。	の対象は自発光のターゲットであり、感度
		への要求が高くない。設備コストの抑制の
		観点から、カメラ感度を条件としない。

表-7.6.2 画像処理システムに使用するカメラの選定条件

(注) ○:カメラ条件、△:オプション条件、×:条件としない

表-7.6.2から、カメラは高画素数のデジタルカメラ、ハイビジョンビデオカメラが有効と 考えられる。なお、現時点で、一般的な道路管理用CCTVカメラについては、画素数が 38 万画素と少ないことから、一定量の変位の検知を可能とするためには、ターゲットとの離隔 距離やカメラの設置高さに制約を受けることになる。

			12 1.0.1				
カメラ		路管理用CCTVカメラ(カラー)		WEBカメラ		デジタルカメラ	
比較項目	高感度単板カラーカメラ	3板カラーカメラ	高感度3板カラーカメラ	屋内型WEBカメラ	ハイビジョンビデオカメ ラ	デジタルカメラ	デジタル一眼レフカメラ
概要	撮像素子に1/2形41万画素の固体撮像素子を採用し、CCD(撮像素子を採用し、CCD(撮像素子1枚を使用)電荷蓄積時間を長くして高感度化を実現した監視用単板カメラ。	撮像部に1/2形マイクロレンズ 付36万画素のCCDを3枚採用し、 小型高性能を実現した監視用3C CDカメラ。	撮像素子に1/2形41万画素 の固体撮像素子を採用し、 CCD電荷蓄積時間を長くし て高感度化を実現した監視 用3CCDカメラ。	カメラ単体は屋内専用であるが、別途 ハウジングを行うことにより屋外での 対応が可能である。	民生用ビデオカメラであ り、操作性が良く、内蔵 メモリがあり、ハイビジ ョン画像を長時間録画す ることができる。	民生用デジタルカメラであ メラより鮮明が画像を撮影	り、高画素であり、ビデオカ することが可能である。
外観 (参考)		a man	-	Persone E sens		Canon	
用途	【主 【監社	E要設置箇所】河川、ダム、道路 現種別】河川/ダム監視、道路監社	見	【主要設置箇所】河川、ダム、道路、 施設 【監視種別】河川/ダム監視、道路監 視、施設監視(民需向け)	民生品	民生品	民生品
最低被写体照度	◎ 0.01Lux以下 ^{注*1}	© 1. 5Lux	◎ 0.001Lux以下 ^{注*1}	0. 6Lux	〇 6Lux程度	△注*2	○注*2
画素数(横×縦)	640×480 px ^{$?$±*3}	$ \begin{array}{c} \bigtriangleup \\ 640 \times 480 \mathrm{px}^{\mathrm{i}\pm*3} \end{array} $	$640 \times 480 \text{px}^{1\pm*3}$	○ 640×480px~1980×1088px	○ 最大1980×1088px	◎ 最大4608×3456 px	◎ 最大6000×4000 px
撮像素子 ^{在*4}	◎ 1/2"相当CCD	◎ 1/2"相当CCD×3	◎ 1/2"相当CCD×3	○ 1/4型 CMOSセンサ	◎ 1/2.88型 "Exmor R" CMOS センサ	◎ 1/2.3型高感度CMOS(裏面 照射型)	© APS-Cサイ (23.5 ×15.6mm)、原色フィ ルタ付"Exmor"APS HD CMOSセンサ
フレームレート	〇 30フレーム/秒	〇 30フレーム/秒	〇 30フレーム/秒	〇 1~30フレーム/秒	〇 30フレーム/秒	○ 1フレーム/秒程度	○ 1フレーム/秒程度
S/N比	\triangle 50dB	O 58dB	© 60dB	\triangle	0	0	0
ズームレンズ (別) (ズーム比)	◎ 有り (約10倍以上)	◎ 有り (約17倍以上)	© 有り (約10倍以上)	△ 有り (約2倍光学)	◎ 10倍(光学) 17倍(エクステンディ ド) 120倍(デジタル)	○ 5倍(光学) 4倍(デジタル)	△ 4倍(デジタル)
コスト	0	0	0	O	©	Ø	Ø

<u>表-7.6.1</u> 主なカメラの性能比較

評価基準:◎:常時監視システムの要求仕様を満たし、比較対象の中で優位である。○:常時監視システムの要求仕様を満たしている。△:条件付きで利用可能。×:仕様を満たしていない。 注*1:電子増感機能を使う場合、画像にノイズが多くなり、画像解析に適していない。

注*2: データは公開されていない。実写では、夜間でも撮影可能であるが、シャッタースピードは低下し、画像はブレやすい。

注*3:カメラのCCDの性能はもっと高い分解能があるが、画像伝送のため、MPEG2で伝送する場合、画素数は640×480になる。

注*4:技術的な進歩でCCDとCMOSの性能差はない。一方、素子のサイズは大きい方が、受光面積が大きくなり、ノイズが少なくなることから、画像処理上では、撮影素子のサイズが大きい方が有利である。

- 2) ターゲットの選定
- (1) 主なターゲット

写真-7.6.1~写真7.6.4に、平成24年度当時に調査した結果、得られた画像処理システムに 使用可能と思われるターゲットを示す。

①中型赤色ターゲット

製品名:ミニ回転灯

(製品概要)

- ・外径240mm
- ·屋外防滴型
- ・全面 12 個レンズに超高輝度LEDを 36 個使用
- ・ 点滅式 (赤)

②小型赤色ターゲット

製品名:LED工事灯

- (製品概要)
 - ・外径90mm
 - ・屋外防滴型
 - ・超高輝度LEDを7個程度使用
 - ・ 点滅式 (赤)
- ③赤外線ターゲット

製品名:赤外線投光機(屋外対応)

(製品概要)

- ・外径60mm
- ·屋外防滴型
- ・50灯の不可視タイプLEDを搭載(赤外線波長940mm)
- ・赤外線照射距離:最大15m (メーカ公称値)

④デリネータ (ガードケーブル用)

(製品概要)

- ・外径80mm
- ・プリズム:アクリル樹脂Φ80両面(橙/白)
- ・デリヘッド:ABS樹脂
- ・自発光無し

写真-7.6.1 中型赤色ターゲット

写真-7.6.2 小型赤色ターゲット

写真-7.6.3 赤外線ターゲット

写真-7.6.4 デリネータ(ガードケーブル用)

(2) ターゲットの選定

表-7.6.3に、画像処理システム向けターゲットの比較表を示す。画像処理システムにより、 昼夜を通して常時監視するためには、自発光タイプの赤色ターゲット、または、赤外線によ る計測が可能な赤外線ターゲットの利用が有効と考えられる。

	小型赤色ターゲット	中型赤色ターゲット	赤外線ターゲット	デリネータ(ガードケー
				ブル用)
現状の主な	主に道路工事現場等で	で、注意喚起用に使用さ	主に、防犯用の照明装置	道路の曲線区間等で、路
用途	れている。		として使用されている。	肩や歩車道境界の視線誘
				導用に設置されている。
一般的なサイ	約9 cm	約24 cm	約6 cm	約8 cm
ズ、通行への	サイズ的に通行の支	設置場所により、支障	サイズ的に通行の支障に	現道に多く設置済み。
影響	障にはなりにくい。	になる可能性有り。	はなりにくい。	
自発光の有無	自発光(可	視光)タイプ	赤外線	自発光無し
ターゲットの	自発光式のため、昼	自発光式であり、点灯	暗色のため、昼夜とも不	昼は不明確。夜はヘッド
視認性	は通常のデリネータ	部分のサイズが大きい	明確。夜間は可視光発光	ライトの反射により明示
	よりやや明確。夜間	ため、昼夜とも、小型	ではないため不明確。	
	は点滅によって明確。	赤色タイプより明確。		
電源、その他	点滅用の電源が必要		点滅用の電源が必要。	特になし
必要な設備			カメラに赤外線フィルタ	
			ーの装着が必要。	

表-7.6.3 画像処理システム向けターゲットの比較表

3) フィールド実験での検証に使用するカメラ及びターゲット

現在のカメラの技術進展の動向を踏まえ、本システムで実務上の目標精度に近い変位の検知を模擬するため、フィールド実験では、高画素数のデジタルカメラ及びハイビジョンビデオカメラを採用する。なお、参考のために、撮影画像を道路管理用CCTVカメラ相当に変換したケースも行った。

ターゲットについては、サイズの違い、さらに、可視光・赤外線ターゲットの違い、を比較するため、以下のように3種類のターゲットを選択し、2種類のカメラと組み合わせて実フィールド実験を行った。

	ハイビジョンビデオカメラ	デジタルカメラ
小型赤色ターゲット	0	0
中型赤色ターゲット	0	0
赤外線ターゲット	0	0

表-7.6.4 フィールド実験に使用するカメラとターゲット

7.6.2 **画像処理手法の概要**

画像処理システムに使用可能と思われる画像処理手法の概要を以下に示す。

1) パターンマッチング法

パターンマッチング法とは、対象画像の中から特定の形状(パターン)を抽出する方法で、 あらかじめ登録した初期画像(「テンプレート画像」という。)と相関値が最も高い画像領域 を抽出する方法はテンプレートマッチング法とも呼ばれており、画像内にある対象物体の位 置検出、物体数のカウント等に使われている。今回使用するターゲットは、背景に比べ形状 ・色彩が特徴的であるため、パターンマッチング法による抽出が適すると考えられた。

図-7.6.1に、パターンマッチング法の処理フローを示す。

図-7.6.1 パターンマッチング法の処理フロー

以下のような手順で実施する。

 ①手動で、テンプレート画像(ターゲット移動前の初期画像) を登録する(例:右画像)。

なお、サーチ時に背景の影響を受けにくくするため、テン プレート画像に背景を含まないよう、ターゲット本体のみ を出来るだけ大きく登録する。

②画像上でのターゲットの移動範囲を想定し、その範囲を サーチ範囲として指定する。

- ③サーチ範囲内で、テンプレートを横方向、そして縦方向に 1ピクセル単位で移動しながら、そのサーチ画像とテンプ レート画像との相関値を計算する。(例:右画像)
 - ※テンプレート画像とサーチ画像が同一の画像である時、相関値は100(%)であり、相関値が100(%)に近いほど、テンプレート画像とサーチ画像との類似性が高い。

今回、視認精度のしきい値(目標値)としては、一般的に相関が高 いとされる相関値70(%)以上及び他の事例²⁾を参考に、相関値75 (%)以上とした。但し、個別には、現地での試行結果等から現地に 即したしきい値を独自に設定することが望ましい。

2) 2值化処理法

2値化処理法とは、画像の輝度値からしきい値を定めて、指定したしきい値以上の場合 は白、しきい値未満の場合は黒に置き換え、濃淡のある画像を白と黒の2階調に変換する 処理方法のことであり、2値化後の白または黒のエリアの形状を利用して、画像から特定 の部分(例:文字、色、明るさ)だけを抽出することができることから、画像内の領域分 割・抽出等に使われている。今回使用する自発光式ターゲットは、点灯画像と消灯画像の 差分画像からターゲットの点灯部分だけを抽出できる可能性が高いことから、2値化処理 法による抽出が適すると考えられた。図-7.6.2に、2値化処理法の処理フローを示す。

図-7.6.2 2値化処理法の処理フロー

自発光式ターゲットまたは赤外線ターゲットを用いて2値化処理を行う場合、以下のよう な手順で実施する。

①連続して3枚の画像(1,2,3)を撮影する。

※ターゲットは周期的に点滅しているため、撮影のタイミングによっては2枚の撮影画像が両方 とも消灯または点灯している可能性があることから、今回は、連続して3枚の画像を撮影し使 用することとした。実用に当たっては、使用するターゲットの点滅周期等の設定が必要。

②1と2、2と3の画像間の差分処理を行い、2枚の差分画像を出力する。

③各々の差分画像について、ターゲットの点灯部分だけが際立つ輝度値をヒストグラ ムから求めて、その値をしきい値とし、2値化処理(白・黒の2階調に変換処理) する。

※一般的には、2値化処理によって抽出したい画像中の特定部分(例:文字)だけを、 背景に比べて際立たせる輝度値をヒストグラム等から求め、しきい値として設定する 場合が多い。現地での試行結果等から、現地に即したしきい値を設定することが望ま しい。

④2値化処理後の画像を整形するため、画像の膨張・収縮を行う。

⑤2値化した画像の中から白い部分を抽出する。

⑥上記⑤で抽出した白い部分の重心点を求め、ターゲットの中心位置として設定する。

7.6.3 フィールド実験における効果の確認

1) 概要

ここでは、上記7.5.2で選定したカメラ、ターゲットをフィールドに設置し、各種撮影 条件のもと、ターゲットの視認性の調査、横ずれ・段差・開きの各方向へのターゲット 移動前後の撮影画像から画像処理により変位量を検知し、実際の移動量と対比すること によりその効果を確認した。

2) 実施時期

実施日:平成24年12月

3) カメラ及びターゲットの設置方法

図-7.6.4に、カメラ、ターゲットの基本配置図を示す。道路管理用カメラの通常の設置高 さが概ね 6m ~ 10m であることから、本実験ではその中間の高さの 8m とした。また、カメ ラからターゲットまでの離隔距離は、8m、12m、20m、30 mとした。

図-7.6.4 カメラ、ターゲットの基本配置図

図-7.6.5に示すように、ターゲットが各方向に所定の移動量となるよう、2 組の単管バリケードのうち後方の単管バリケードを手動で移動し、移動前後の状況をカメラで撮影した。

表-7.6.5 フィールド実験での使用カメラ

●使用ターゲット: ※7.6.1 2)(1)を参照

中型赤色ターゲット、小型赤色ターゲット、赤外線ターゲット

4) フィールド実験の結果

(1) カメラとターゲットの離隔距離別の変位量(5cm)検知結果

表-7.6.6に、カメラの設置高さ8m、カメラからターゲットまでの離隔距離が8m、12m、 20m、30mの場合における、横ずれ・段差・開きの各方向の変位量(5cm)に対する検知結果 (ズーム無し)を示す。

今回の場合、デジタルカメラが検知可能な離隔距離は最長20m、開き方向の検知を無視 すれば最長30m。また、ハイビジョンビデオカメラが検知可能な離隔距離は最長12m、開き 方向の検知を無視すれば最長20mであった。また、デジタルカメラ画像を一般的な道路管 理用CCTVカメラ相当に変換した画像では、検知可能な離隔距離が最長8m、開き方向の 検知を無視すれば最長12mであった。なお、画像処理では輪郭の強調やノイズ除去等の処 理を施すため1~2画素分を誤差相当とみなすことから、各方向の変位量が2px(ピクセル)/5 cm以下の場合は、画像処理による5cm精度での変状の検知は不可と判断した。

表-7.6.6 カメラとターゲットの離隔距離別の変位量(5cm)検知結果(ズーム無し)

ターゲットの変位方向		8m			12m			20m			30m	
	横方向	高さ方向	開き方向	横方向	高さ方向	開き方向	横方向	高さ方向	開き方向	横方向	高さ方向	開き方向
道路管理用 CCTV カメラ 相当 *1	3.6px/5c m	3px/5cm	3px/5cm	2.8px/5c m	3px/5cm	1.5px/ 5cm	2.1px/5c m	1.8px/5cm	0.6px/ 5cm	1.4px/ 5cm	1.3px/ 5cm	0.4px/5c m
38万画素 (横)640×(縦)480px	0	0	0	0	0	×	0	×	×	×	×	×
ハイビジョンビデオカメ ラの場合	4.9px/ 5cm	5.6px/ 5cm	4.9px/ 5cm	3.7px/ 5cm	5.3px/ 5cm	2.2px/ 5cm	2.5 px/ 5cm	3.1 px/ 5cm	0.5 px/ 5cm	1.7 px/ 5cm	1.8 px/ 5cm	0.1 px/ 5cm
665万画素 (横)1440×(縦)1088px	0	0	0	0	0	0	0	0	×	×	×	×
デジタルカメラの場合 1680万画素	13px/5cm	11px/5cm	10.9px/5c m	10.1px/5c m	11px/5cm	5.9px/ 5cm	7.56px/5c m	6.63px/5c m	2.3px/ 5cm	5px/ 5cm	4.5px/ 5cm	1.5px/5c m
(横)4608×(縦)3456px	0	0	0	0	0	0	0	0	0	0	0	×

※上記の検知結果は、ターゲットの位置が正確に視認されていることを前提とする。

*1--- デジタルカメラ画像を一般的な道路管理用CCTVカメラ画像相当に変換した画像

(px : ピクセル(画素数))

(2) カメラの性能の違いによる同一条件での撮影画像の違い

写真−7.6.5に、カメラの性能の違いによる同一条件下での撮影画像の違いを示す。表−7. 6.7に示すカメラの焦点距離が長いほど画角が狭くなり、**写真−7.6.5**のように撮影範囲が 狭く撮影画像内での被写体(ターゲット)が大きくなる。

	デジカメとの画素数比	焦点距離	デジカメとの撮影範囲の比			
デジタルカメラ	1	24mm	1			
1680万画素(横:4608×縦:3456px)						
ハイビジョンビデオカメラ	1/3.2	31.8mm	0.755 (=24/31.8)			
665万画素(横:1440×縦:1088px)						
道路管理用カメラ相当	1/7.2	45mm	0.533 (=24/45)			
38万画素(横:640×縦:480px)						

表-7.6.7 カメラの精度による相違

デジタルカメラ:1680万画素

ハイビジョンビデオカメラ:665万画素

撮影範囲

道路管理用カメラ相当:38万画素 焦点距離と画角・撮影範囲との関係図 写真-7.6.5 カメラの撮影範囲の違い ※ターゲットまでの離隔距離:12m

(3) ターゲットの視認性の調査

天候、昼・夜等、異なる撮影条件下でのターゲットの視認性を調査した。

①写真-7.6.6に示すように、晴れの場合、太陽光が強くなり、画像全体が白くなる傾向がある。また、自発光式ターゲットの光は、昼間には認識することが困難な時間帯(例:太陽の光が強い・直射する時間帯)がある。建物の影は、時間経過とともに形状が変化し画像内で明暗のコントラストが生じる時間帯があり、曇りの場合には画像全体が暗くなるが、視認は可能であった。

曇り

晴れ・午後、建物の**影**

写真-7.6.6 昼間(晴天、曇天時)の撮影画像 ※ターゲットまでの離隔距離:12m

②写真-7.6.7に示すように、小雨の場合でも、画像は比較的に鮮明であるが、カメラのカバーガラスに水滴や曇りが発生しやすく、ターゲットの位置に発生した場合は、ターゲット を鮮明に撮影することは困難である。

雨 水滴・レンズの曇り 写真-7.6.7 昼間(雨天時)の撮影画像 ※ターゲットまでの離隔距離:12m

③写真-7.6.8に示すように、夜、自発光式のターゲットでない場合、ターゲットの検知 は困難である。

夜(ターゲット点灯)

夜 (ターゲット消灯)

写真-7.6.8 夜間の撮影画像

④写真-7.6.9に示すように、車のヘッドライトをターゲットに照射した場合、ターゲットの 明るさは相対的に弱くなり、画像から認識することが困難になる。

小型赤色ターゲットにローライトで背面から照射

カメラに向けて直射 カメラに向けて直射 写真-7.6.9 夜間(車のヘッドライトの照射時)の撮影画像

赤外線ターゲットにローライトで背面から照射

⑤**車のヘッドライトを直接カメラに向けて照射**した場合、カメラの画像にハレーションが発生する。しかし、従来のCCD素子のスミアによる白飛び現象(**写真-7.6.10** に示す縦の白い線)は、CMOSを採用するカメラには発生しないことを確認した。

写真-7.6.10 スミアの発生例(縦の白い線)

図-7.6.6 スミアの発生例

⑥写真-7.6.9(右側)に示すように、赤外線ターゲット及びカメラに赤外線フィルタを装着した場合には、車のライトの影響を大幅に低減できた。但し、赤外線ターゲットを使用する場合には、カメラに赤外線フィルタ(可視光カットフィルタ)を装着する必要があり、赤外線フィルタの装着によって可視光がカットされ、画像上では赤外線ターゲット以外が暗くなる。一方、デジタルカメラに利用されているオートフォーカス機能は、レンズで捉えた画像のコントラストを利用して測距を行うことから、赤外線フィルタの装着によってコントラストが極端に低くなり、カメラのピントが合わなくなる場合があり、本実験でもそのような状況が実際に確認された。

⑦結果

昼間は、いずれのタイプのターゲットも視認可能であったが、夜間は自発光式ターゲット及び赤外線ターゲットのみ視認できた。但し、赤外線ターゲットを使用した際には、 上記⑥に記載のとおり、カメラのピントが合わない状況があった。

(4) 画像処理によるターゲットの検知精度の確認

パターンマッチング法

パターンマッチング法を利用して、テンプレート画像(ターゲット移動前の初期画像) と各種撮影状況下における撮影画像との相関値を求めた。相関値とは、テンプレート画 像と撮影画像がどれだけ似ているかという評価値であり、両者が同一の時は100(%)とな り、100(%)に近いほど似ている画像といえる。今回、視認精度のしきい値(目標値)とし ては、一般的に相関が高いとされる相関値 70(%)以上及び他の事例²⁾を参考に、相関値 75 (%)以上とした。但し、実用に当たっては、個々の設置場所の状況が異なるため、現 地での試行結果等から現地に即したしきい値を独自に設定することが望ましい。

写真-7.6.11 に、抽出画像の拡大図を示す。

写真-7.6.11 パターンマッチング法による計測結果の表示例

ア)赤色ターゲット(中型、小型)

パターンマッチング法により画像処理した結果を、**写真-7.6.12~写真-7.6.15** 及び 下記に示す。なお、中型赤色ターゲットは、ターゲット内部の模様が顕著、サイズも大 きいため、小型赤色ターゲットに比べて相関値は高めであった。小型赤色ターゲットは、 ターゲット面が小さく模様が遠目には見にくいため、ヘッドライトや日照の影響を受け やすい。

- ●昼間は、昼用のテンプレート画像と類似な条件の場合、高い相関値になっていた。 一方、夜間やヘッドライトの照射時は、昼用テンプレート画像との条件が異なる ため、相関値が低くなる。
- ●夜用のテンプレート画像を使用した場合、夜間の相関値は改善するが、夜間の赤 色ターゲットの消灯時やヘッドライトの照射時にはターゲットの輪郭が見えにく くなり、相関値が低下した。
- ●通常の影は、パターンマッチングへの影響が少なかった。
- ●車のヘッドライトより、ターゲットの自発光の方が明るい場合には、ターゲットの輪郭が残るため視認が可能であった。
- ●一方、車のヘッドライトが直射した場合、CCDカメラにはハレーション(白飛び)が発生し、視認できなくなる。CMOSカメラには発生しない。

写真-7.6.12 中型赤色ターゲットの画像処理結果(昼間:デジカメ撮影画像)

写真-7.6.13 中型赤色ターゲットの画像処理結果(夜間:デジカメ撮影画像)

0	NUMERAL AND THE	
テンプレート画像(昼用)	テンプレート画像を基に、昼	明るさ弱時の画像【96】
	間(点灯)画像をサーチした	
	結果【100】←相関値	
HEIRSENSI I.I.G. ITIS		
ヘッドライトを照らした	ヘッドライトを照らした時	ヘッドライトを照らした時

写真-7.6.14 小型赤色ターゲットの画像処理結果(昼間:デジカメ撮影画像)
		112155.07,1462.10[90]
テンプレート画像(夜用)	テンプレート画像を基に、夜	明るさ弱時の画像【90】
	間(点灯)画像をサーチした	
	結果【99】←相関値	
	112151.880,1453.731888	
明るさ強時の画像【86】	ヘッドライトを照らした時	
	の画像【88】	

写真-7.6.15 小型赤色ターゲットの画像処理結果(夜間:デジカメ撮影画像)

()赤外線ターゲット

パターンマッチング法により、赤外線ターゲットを画像処理した結果を、**写真-7.6.16** に示す。赤外線ターゲットは昼・夜とも、比較的高い相関値を示し、車のヘッドライトの 影響も受けにくいことを確認した。但し、ターゲット消灯時の検知は困難であった。

	+	1[2325.00,1439.00][84]
テンプレート画像	【昼】テンプレート画像を基	【昼】明るさ弱時の画像
	に、昼間(点灯)画像をサーチ	【84】
	した結果【100】←相関値	

		URESSIGNED A DUGO
【昼】ターゲットを移動	消灯時の画像【27】	【夜】ヘッドライトを照ら
した時の画像【98】		した時の画像【98】
+ 112154250,1495,17193		
【夜】ターゲットを部分		
遮蔽した時の画像【92】		

写真-7.6.16 赤外線ターゲットの画像処理結果(昼・夜間:デジカメ撮影画像)

②2值化処理法

今回は、**写真-7.6.17**に示すように、3枚のターゲットの撮影画像(点灯時、消灯時) を差分処理し、各々の差分画像について、ターゲットの点灯部分だけが際立つ輝度値をし きい値として2値化処理(白・黒の2階調に変換処理)し、2値化処理した画像中の点灯 部分の形状から同一のターゲットか否かの視認及びターゲットの中心位置の抽出を行っ た。

結果として、ターゲットの消灯時や昼間は、視認が困難であった。夜間はターゲットの 位置を特定できるが、中心点の抽出精度がパターンマッチング法に比べて良くなく、**写真** -7.6.18に示すように、中型赤色ターゲットを2値化処理で画像処理した結果、ター ゲットの中心点位置がずれていた。なお、赤外線ターゲットについては、赤外線によっ てターゲットの位置が強調され、**写真-7.6.19**に示すように、昼間でもターゲットを視認 することが可能であった。

入力画像(夜間)	差分	 分 ★
差分画像	0	0
2 値化画像	Θ	
膨張画像	Q	
収縮画像	Ć)	
抽出画像	\Diamond	

写真-7.6.17 中型赤色ターゲットの2値化処理の流れ(夜間:デジカメ撮影画像)

写真-7.6.18 中型赤色ターゲットの2値化処理による抽出結果 ※初期画像に比べ中心点がずれ

入力画像	ę	
差分画像	O.	•
2 値化画像	0	
抽出画像	\$	•

	写真-7.6.19	赤外線ターゲットの2値化処理の流れ	(昼間:デジカメ撮影画像)	※途中略
--	-----------	-------------------	---------------	------

③結果

画像処理方法としては、パターンマッチング法が 2 値化処理法に比べて有効とい えるが、より高い精度でターゲットを認識するためには、昼夜や天候の別によりテン プレート画像を変える等の措置が必要となる。表-7.6.8に、2 種類の画像処理手法の 対比結果を示す。

	パターンマッチング法	2值化処理法
検知成功	0	\bigtriangleup
の判別の	相関値により判別。相関値のしきい値の設定	しきい値のみによる判別の精度は高くない。しき
しやすさ	は比較的容易。	い値の設定は複雑。
ノイズの	0	\bigtriangleup
選別	相関値によりノイズを選別。	2値化した画像の特殊な処理によってノイズをカ
		ット。ターゲット消灯時や昼間は利用が困難。
日照・車	\bigtriangleup	×
のヘッド	ターゲットのサイズを大きくする、ターゲッ	日照のある状況下では、ターゲットの点滅による
ライトに	トの背景の影響を少なくする等により、相対	明暗の差がハッキリしないため、認識が困難。
よる影響	的な影響は少なくできる。	
精 度	0	\bigtriangleup
	テンプレートのサイズ及び特徴が顕著な場	中心点位置の抽出精度が悪い。
	合、認識精度は高い。	
パソコン	\triangle	0
の処理負	相関値の計算量は比較的に重い。	計算は単純であり、パソコンの負荷は少ない。
総合評価	0	Δ

表-7.6.8 画像処理手法の対比結果

7.6.4 画像処理システムによる相対変位の計測及び異常判定の手法

以下に、カメラの撮影画像からターゲットの変位量を検知する、画像処理システムによる 相対変位の計測及び異常判定の手法を示す。

1) 基本処理フロー

図-7.6.7に画像処理の基本フローを示す。フィールド実験での結果を踏まえ、画像処理シス テムにおける画像処理は、パターンマッチング法を主たる処理方法とした。

(1) 画像処理のための準備作業

図-7.6.7に示す画像処理システムによる相対変位の計測を行うための準備として、以下の設定を行う必要がある。 ※現地での試行結果等から、計測地点に即した設定を行うことが望ましい。

①処理方法の選択(基本的に、パターンマッチング法を選択する。)

- ②ターゲット毎に、昼・夜等の状況に応じたターゲットのテンプレート画像(ターゲット 移動前の初期画像)を登録。
- ③ターゲット毎に、ターゲットが移動する範囲を想定し、テンプレート画像を用いた相関 値の計算を行うサーチエリアを登録。
- ④撮影画像の中で処理対象とする全ターゲットを囲んだエリア(画像処理対象エリア)を 設定。
- ⑤画像処理用パラメータの設定。
 - (例)・パターンマッチング法や2値化処理法の視認成功のしきい値
 - ・画像処理の実施頻度、視認失敗時の再処理の繰り返し回数
- ⑥処理対象動画データを静止画に変換する頻度の設定(例:1秒間の動画から1枚の静止 画を切り出し)

(2) 画像処理システムによる相対変位計測における異常判定の手法

図-7.6.7に示すよう、画像処理システムは以下の手順を繰り返し実行する。

※現地での試行結果等から、計測地点に即した設定を行うことが望ましい。

①処理対象画像を読み込む。

②処理対象画像から、処理対象とする全ターゲットを囲んだエリアを切り出す。

- ③指定した画像処理手法により、ターゲットの視認を行う。
- ④ターゲットの視認度合い(しきい値を使用)から視認の成功・失敗を判定。

(正しく視認された場合)

- ⑤ターゲットの画像上の変位量の計算
 - ・計測開始時のターゲット位置と、その後の画像から抽出した同一ターゲッ
 - ト位置との差分値を求め、画像上の変位量を算出する。
- ⑥変位量が警戒値を超えているかを判定。
- ⑦検知した変位量が警戒値を超えた場合、監視カメラによるリアルタイム映像の目 視確認結果等も含めて警報の発令を判断する。

(正しく視認されなかった場合)

⑧指定した画像処理の回数を超えているかの判定。
⑨超えている場合は、システムの異常を出力。

7.7 画像処理システムの実橋における検証

7.7.1 画像処理システムの実橋における検証

1) 概要

供用中の道路橋にカメラ・ターゲット等を設置し、画像処理システムの稼働状況を確認 するとともに適用条件の整理を行った。

2) 実施時期

平成25年2月

3) 実施場所

国土技術政策総合研究所敷地内(茨城県つくば市)にある橋長約40mの単純鋼鈑桁橋 図-7.7.1、写真-7.7.1~7.7.2に、実施場所の位置図、写真を示す。

写真-7.7.1 対象橋梁

写真-7.7.2 実施場所の空撮写真

(出典) この背景地図等データは、国土地理院の電子国土 Web システムから提供されたものである。

4) カメラ及びターゲットの設置方法

ターゲットは、地震による被災事例を踏まえ、橋台桁端部(橋台背面を含む)付近に設置した。また、カメラは、ターゲット設置位置からカメラの計測可能範囲内(フィールド 実験結果:表-7.6.6参照)、かつ、設置高さが建築限界以上となるように、ターゲット設置位置付近の道路標識柱に添架した。

図-7.7.2 カメラ、ターゲットの配置図

●使用カメラ : デジタルカメラ(1680万画素)、ハイビジョンビデオカメラ(665万画素)

※7.6.3 3)参照

●使用ターゲット:小型赤色ターゲット

※昼夜の計測が可能で、既存のデリネータと同様のサイズにつき、通行への支障 が少ないことから採用した。

※7.6.1 2)(1)参照

写真-7.7.3 カメラ、ターゲットの設置状況 (左:カメラ及びターゲットの配置図、右:カメラから撮影したターゲットの様子)

5) 検証実験の結果

(1) ターゲットの視認性及び変位量の検知

高欄に取り付けた小型赤色ターゲットを手動で各方向に動かし、掛け違い部、桁端部の横 ずれ、段差、開きを模擬した。図-7.7.3に、小型赤色ターゲットの移動イメージを示す。

図-7.7.3 ターゲットの移動イメージ

昼間は、写真-7.7.4に示すように、パターンマッチング法による各ターゲットの相関値は、 一部誤認識の状態を除き75以上が確保されており、各ターゲットは精度良く認識されていた。 また、図-7.7.4に示すように、ターゲットの移動量と撮影画像のターゲット移動前後の差分値 (ピクセル数)との関係では、横ずれ・段差方向には5cmの移動量が10~15ピクセル程度、開 き方向には5cmの移動量が4ピクセル程度、で検知されていた。画像処理では、一般に、1~2 ピクセル分を輪郭の強調やノイズの影響による誤差相当としてみなすが、誤差相当分を考慮 しても、画像処理システムにより5cm以上の移動量の検知が可能であることを確認した。

写真-7.7.4 パターンマッチング法によるターゲットの相関値

^{【 】}内は、撮影画像とテンプレート画像との相関値

図-7.7.4 ターゲットの移動量と検知結果(画像上の移動ピクセル数)との関係

図-7.7.5~図-7.7.7に、13時頃~21時頃までの画像処理システムによるターゲットの変位 の検知結果を示す。横軸は画像の撮影時刻で、縦軸はターゲットの移動量の検知結果(画像 上の移動ピクセル数)である。図-7.7.5は、昼用のテンプレート画像を2枚採用した場合の検 知結果である。昼間は相関値75以上でターゲットの変位を検知できていたが、17時頃から周囲 が暗くなるとともに相関値が75を下回り、ターゲットの変位を検知できない時間が多くなっ た。図-7.7.5~図-7.7.6のひげ状の部分(縦方向の棒グラフ)はターゲットの位置を視認でき ない、または誤認識の画像を意味する。

図-7.7.5 画像処理システムによる検知結果(テンプレート画像:昼用2枚)

図-7.7.6に、昼用のテンプレート画像3枚、夜用のテンプレート画像1枚を採用した場合の検知結果を示す。夜用のテンプレートを追加登録したことにより、夜間にターゲットの変位を検知できる時間が多くなった。但し、ターゲットは自発光式のため、撮影のタイミングに消灯している時には、ターゲットの位置を視認できていない。

図-7.7.6 画像処理システムによる検知結果(テンプレート画像:昼用3枚、夜用1枚)

図-7.7.7に、ターゲットが視認できた画像のみを抽出したグラフを示す。横ずれ・段差・ 開きの各方向にターゲットを5cm移動させた後の状態が、画像処理システムにより5~10ピクセ ル程度の変位量として検知されていることから、画像処理上の誤差(1~2ピクセル)相当 を考慮しても、5cm以上の移動量の検知が可能であることを確認した。

図-7.7.7 画像処理システムによる検知結果(ターゲットを視認できた画像のみ)

(2) カメラ~ターゲットまでの離隔距離が長い場合のターゲットの視認性

ハイビジョンビデオカメラ(ズーム無しの状態 ※フィールド試験結果(表-7.6.6)では、変位量 (横方向、高さ方向)5cmが検知可能な最長距離は20m)で、30m先に設置したターゲットの視認性を調 査した。写真-7.7.5に、30m先のターゲットの撮影画像を示す。手前側(10.7m先)のターゲッ トは視認できたが、30m先のターゲットは昼間・晴天の好条件下においても、ターゲットまで の距離が長くターゲットサイズも小さいため、小型赤色ターゲットではパターンマッチング 法による視認が不可能であった。

写真-7.7.5 30m先に設置した小型赤色ターゲットの撮影写真(ズーム無し)

この場合の対応としては、ズームアップによりターゲットを拡大して撮影することや、 視認可能なより大きいターゲットを使用することが考えられる。但し、ズームアップする と撮影範囲が狭くなるため周辺の変状を把握しにくく、画像がブレやすくなる。また、大 きいターゲットを使用する場合、設置箇所によっては通行の支障になる可能性があるので、 注意が必要である。

(3) 車両のヘッドライトによる影響

写真-7.7.6(右側)のように、車両のヘッドライトがターゲットを直射した場合、白飛 びが発生し、ターゲットを視認できなかった。一方、写真-7.7.6(左側)のように、ヘッ ドライトがターゲットに対し斜方向の照射かつターゲットの明るさの方が強い場合には、 ターゲットの視認が可能であった。

ターゲットに対し斜方向の照射(視認可能) ターゲットを直射(視認不可) 写真-7.7.6 車両のヘッドライトによる影響

(4) 通行人の懐中電灯による影響

写真-7.7.7 (右側)のように、通行人の懐中電灯の光がカメラを直射した場合、白飛びが発生し、ターゲットを認識できなかった。一方、写真-7.7.7 (左側)のように、懐中電灯の光がターゲットを直射せず、ターゲットの明るさの方が強い場合は、ターゲットの視認が可能であった。

懐中電灯の光がターゲットと同方向(視認可能) 懐中電灯の光がカメラを照射(視認不可) 写真-7.7.7 通行人の懐中電灯の光による影響

(5) 風の影響

本実験中、風の影響によってカメラの向き(撮影方向)がずれ、ターゲットT1、T3の画像上の座標が変化してしまった。ターゲットの画像上の変化量は、図-7.7.9に示すように30ピクセル程度(横方向)であった。このままの状態で位置補正を行わないと、この変化量はターゲットの移動量として誤認識され、誤判定が発生してしまう。このため、図-7.7.8に示すようにT1を基準点、T2をT1の相対極座標としてターゲットT3の相対変位量を求めて補正した結果、図-7.7.10に示すように、カメラのずれによるターゲットの変化量が1ピクセル未満となり、誤判定を防止できた。

図-7.7.8 複数ターゲットによる相対変位量の抽出イメージ

図-7.7.9 風の影響によるターゲットの画像上の変位(例としてT1,T3)

図-7.7.10 複数のターゲットを用いた相対変位による補正結果

(6) 橋台の背面沈下

図-7.7.11に示すように、橋台にターゲット(測量明示板またはLED道路鋲)を設置し、手動 によりターゲットを2cm単位で段階的に10cmまで下げて、橋台背面の沈下を模擬した。

(※)使用ターゲット

今回、橋台背面沈下の計測用として、図-7.7.12に示す測量明示板(直径 47mm、自発光無し)を4個1組で十字配置したものと、LED道路鋲(自発光タ イプ)の2種類を、新たにターゲットとして使用した。

LED 道路鋲(自発光タイプ)

図-7.7.12 使用ターゲット

①測量明示板

図-7.7.13~図-7.7.14に、昼間の時間帯、測量明示板を2cmずつ低下させた場合の低下 量と、画像処理結果の相関図を示す。写真-7.7.8では、パターンマッチング法によるター ゲットの相関値が75以上あり、図-7.7.13では、2cmの移動量が5ピクセル程度となってい ることから、昼間において、今回のカメラ・ターゲットの位置関係であれば、画像処理 により2cm以上の沈下量が検知可能であることを確認した。

(注意) 画像処理では、1~2 画素分を輪郭の強調やノイズの影響による誤差相当とみなす。

写真-7.7.8 パターンマッチング法によるターゲットの相関値

【 】内は、撮影画像とテンプレート画像との相関値

図-7.7.13 ターゲット(測量明示板)の移動距離と画像ピクセル数の変化のグラフ

図-7.7.14 ターゲット(測量明示板)の時系列の処理結果

②LED道路鋲(自発光タイプ)

図-7.7.15~図-7.7.16に、昼間の時間帯、LED道路鋲を2cmずつ低下させた場合の低下量 と、画像処理結果の相関図を示す。写真-7.7.9では、パターンマッチング法によるターゲ ットの相関値が75以上あり、図-7.7.15では、2cmの移動量が5ピクセル程度となっている ことから、昼間において、今回のカメラ・ターゲットの位置関係であれば、画像処理に より、2cm以上の沈下量が検知可能であることを確認した。

> テンプレート 画像(T3) テンプレート画像(T1) T[2411.16,1525.64][97] T[2416.69,1701.40][83] -2cm の画像を対象にサーチした -2cm の画像を対象にサーチした結 果(T1)【97】 結果(T3)【83】 T[2431.58,1518.67][94] T[2437.60,1699.76][90] -4cm の画像を対象 -4cm の画像を対象 にサーチした結果(T1) にサーチした結果(T1) [90] [94]

(注意) 画像処理では、1~2 画素分を輪郭の強調やノイズの影響による誤差相当とみなす。

写真-7.7.9 パターンマッチング法によるターゲットの相関値

(7) 実橋における検証実験結果のまとめ

- ①デジタルカメラ、ハイビジョンビデオカメラ共に、ターゲット移動量の検知精度はフィールド実験結果(表-7.6.6)と同様であった。なお、カメラ〜ターゲットまでの離隔距離が長すぎる場合、ターゲットの視認が不可能であった。この場合の対応としては、ズームアップによりターゲットを拡大して撮影することや、視認可能なより大きいターゲットを使用することが考えられる。但し、ズームアップすると撮影範囲が狭くなるため周辺の変状を把握しにくく、画像がブレやすくなる。また、大きいターゲットを使用する場合、設置箇所によっては通行の支障になる可能性があるので、注意が必要である。
- ②テンプレート画像(ターゲット移動前の初期画像)を、想定される状況に応じて細かめ に登録すると、ターゲットの視認精度が高まった。
- ③ヘッドライト等の光がカメラを直射すると、画像に白飛びが発生する。また、ターゲットに照射した場合は、ターゲットの明るさが相対的に低くなるが、ターゲットの明るさの方が勝る場合には視認が可能であった。
- ④複数のターゲットを用いた相対変位による補正を採用することで、風によりカメラの向きがずれた場合の対処が可能であった。
- ⑤測量明示板やLED道路鋲(自発光タイプ)をターゲットとして利用した場合でも、昼間は、 目標の変位量を検知することが可能であった。

6) 適用条件の整理

実橋における検証実験の結果、今回試設計した画像処理システムの主な適用条件を以下 のように整理した。

- ①パターンマッチング法による画像処理においては、ターゲットの相関値を高めるため、 天候や昼夜の別、現地の状況(特にターゲットと背景との関係)に合わせて、適切な テンプレート(ターゲット移動前の初期画像)を登録する必要がある。
- ②ターゲットと背景の明るさの差によって、ターゲットの視認度合いが異なる。ターゲットの方が明るい場合は、ターゲットは大きく映る。一方、背景の方が明るい場合は、ターゲットは小さく映る。この場合の対応としては、テンプレート画像に背景を含めないようできるだけターゲットを大きめに登録する、ターゲットの背面に背景を遮蔽する板を付ける、等が考えられる。
- ③夜間、ターゲットの点灯周期とカメラの撮影周期との関係で、ターゲットが消灯して いる状態を連続で撮影する可能性があるため、ターゲットの点灯周期を考慮した撮影 周期を設定する必要がある。
- ④風の影響等によるカメラ角度のズレを補正するためには、同じ画面上で4基全てのタ ーゲットを視認する必要があるため、夜間に4基全てのターゲットが同時点灯するよう、あらかじめ点滅周期を設定する必要がある。
- ⑤実用に当たっては、個々の設置場所の状況が異なるため、事前に試行し、現地に即した7.6.4 1)(1)に示す設定を行う必要がある。

7.8 GPSセンサーによる絶対変位計測の検証

7.8.1 GPSセンサーによる絶対変位計測の検証

1) 概要

GPSセンサー(キネマティック測位方式)を取り付けた橋梁に変状が発生した場合を模擬し、GPSセンサーを移動させることにより、実際の移動量とGPS計測値の移動前後の差(変位量)を対比して、その精度を確認した。また、GPS計測値に各種の統計処理を行い、異常判定に必要な計測時間と処理方法、精度等の異常判定手法を検討した。

2) 実施時期

平成25年2月

3) 使用機材

キネマティック測位方式GPSセンサー

(名称)GR-2100DG TOPCON製

(データ取得間隔)1秒

(取得データ)世界測地系のXY座標(茨城県はIX9系)と電子基準点による標高

4) 検証実験の結果

(1) 掛け違い部、桁端部の横ずれ・段差・開き発生時の計測

掛け違い部、桁端部の横ずれ・段差・開きの発生を模擬するため、GPSセンサーを移動 しながら、GPSデータの計測を行った。表-7.8.1に示すように、各方向にGPSセンサーを 移動させた実際の移動量とGPS計測値との移動前後の差(変位量)は、概ね一致すること を確認した。

(2) 衛星の日変動の影響

表-7.8.1の実験順番18におけるGPSセンサーの1分間平均データの複数日データを、図-7. 8.1に示す。図-7.8.1では、今回計測した4日間のうち同様の時刻の計測結果に同様な動きが 見られることから、日周期で同じような動きをしていると思われる。また、表-7.8.1の実験順 番18データより、Z(高さ)方向の標準偏差(1.7cm)が、X(南北)方向・Y(東西)方向の標準 偏差(0.8cm、0.7cm)より大きく、日変動幅も大きいことを確認した。なお、今回はVRSを 利用したため、計測箇所付近の基準点が自動的に割り当てられたことから、基準点の相違に よる計測値の精度の違いは検証できなかった。

VRS: 仮想基準点方式(Virtual Reference Station) →民間の計算センターは、全国の国土地理院電子基準点データを受信し、それぞれの利用者の要望にあっ た仮想基準点の GPS 補正情報を合成し、各利用者に配信する。利用者は自分の計測地点の近くの仮想基 準点の GPS 補正情報を利用し、高精度な位置計測を行う。

表-7.8.1 GPSセンサーによる計測結果一覧

				東西方向	南北方向	高さ方向			まして町	K(cm)(南	郭北方向	GPS計測	値の差	Y(cm)(す	〔西方向(GPS計測	値の差)	Z(cm)(高	高さ方向の	GPS計測	値の差)
観測日	天気	<i>夫</i> 驶 順 采	ズレ種類	移動量	移動量	移動量	計測時間	器械高(m)	単との距離												
		順省		(cm)	(cm)	(cm)			丙田	最大値	最小値	平均值	標準偏差	最大値	最小値	平均值	標準偏差	最大値	最小値	平均值	標準偏差
2013/2/6	雪	1	基準	0	0	0	24時間	1.434	-	6.5	-5.7	0.0	0.9	3.9	-5.2	0.0	0.8	14.3	-12.8	0.0	1.7
2013/2/7	晴	2	東	2.5	0	0	60分	1.434	-	2.1	-3.5	-1.0	1.1	4.8	1.2	2.6	0.6	8.6	-6.0	0.4	1.6
2013/2/7	晴	3	東+北	2.5	2.5	0	60分	1.434	-	4.3	-0.1	2.0	0.7	3.9	0.3	2.2	0.7	4.3	-4.0	0.1	1.4
2013/2/7	晴	4	光	0	2.5	0	60分	1.434	-	4.3	-0.1	2.5	0.8	2.1	-2.4	-0.4	0.7	3.9	-7.2	-1.5	1.7
2013/2/7	晴	5	光	0	5	0	60分	1.434	-	7.6	3.2	5.1	0.7	1.2	-2.5	-0.8	0.6	4.2	-4.5	-0.2	1.3
2013/2/7	晴	6	東+北	5	5	0	60分	1.434	-	8.8	2.1	5.7	0.9	6.6	2.9	4.7	0.6	5.4	-5.0	-0.5	1.5
2013/2/7	晴	7	東	5	0	0	60分	1.434	-	2.1	-1.2	0.3	0.6	6.6	3.0	4.6	0.6	4.6	-5.6	-1.0	1.4
2013/2/8	晴	8	下	0	0	-2.5	5時間	1.409	-	3.0	-4.9	0.1	0.8	1.6	-2.5	-0.4	0.4	3.0	-12.2	-2.5	1.8
2013/2/8	晴	9	東+下	2.5	0	-2.5	60分	1.409	-	3.2	-2.4	0.1	0.7	4.2	0.4	2.3	0.5	2.3	-7.2	-2.8	1.5
2013/2/8	晴	10	北東+下	2.5	2.5	-2.5	60分	1.409	-	5.0	-0.3	2.6	0.8	4.0	-1.4	1.2	0.8	2.3	-8.6	-3.4	1.5
2013/2/8	晴	11	北+下	0	2.5	-2.5	60分	1.409	-	4.1	0.7	2.4	0.6	1.9	-1.9	0.1	0.6	2.1	-7.8	-3.0	1.6
2013/2/8	晴	12	下	0	0	-5	60分	1.384	-	1.6	-2.1	0.0	0.5	1.5	-2.2	-0.3	0.5	-1.4	-12.4	-6.3	1.7
2013/2/8	晴	13	東+下	5	0	-5	60分	1.384	-	1.7	-2.2	-0.3	0.6	7.2	2.5	4.7	0.8	-0.9	-9.8	-5.0	1.2
2013/2/8	晴	14	北東+下	5	5	-5	60分	1.384	-	7.0	3.3	4.9	0.6	6.9	1.3	3.7	0.9	5.2	-10.9	-4.8	2.3
2013/2/8	晴	15	北+下	0	5	-5	11時間	1.384	-	12.0	-4.6	4.7	0.9	2.9	-3.8	-0.1	0.6	7.2	-22.7	-4.8	1.9
2013/2/9	晴	16	下	0	0	-7.5	60分	1.359	-	1.3	-2.4	-0.3	0.5	1.9	-1.4	0.2	0.6	-9.8	-0.3	-6.0	1.4
2013/2/9	晴	17	下	0	0	-15	60分	1.284	-	2.1	-3.1	-0.4	0.8	2.0	-0.9	0.5	0.5	-8.3	-19.1	-14.8	1.3
2013/2/9	晴	18	基準	0	0	0	89時間	1.434	-	4.3	-8.0	0.0	0.8	4.0	-3.3	-0.2	0.7	13.3	-13.0	-0.6	1.7
2013/2/9	晴	1	南西	-50	-50	40.1	60分	1.835	-	-50.3	-53.7	-51.8	0.5	-46.5	-50.0	-48.1	0.5	44.2	33.9	39.7	1.2
2013/2/9	晴	2	南西	-100	-100	-28	60分	1.155	-	-100.2	-104.5	-102.6	0.6	-95.1	-99.0	-96.6	0.9	-19.8	-33.0	-27.6	1.7
2013/2/9	晴	3	南西	-100	-100	-28	60分	1.155	70	-99.8	-104.9	-102.4	0.7	-95.7	-100.2	-97.7	0.5	-22.2	-33.9	-28.0	2.0
2013/2/9	晴	4	基準	0	0	-126	60分	0.17	-	2.2	-3.6	-0.3	0.8	1.2	-2.0	-0.4	0.5	-131.1	-122.2	-127.2	1.2
2013/2/9	晴	5	基準	0	0	-126	60分	0.17	50	5.5	-6.2	-0.4	1.6	3.3	-3.9	-0.5	1.0	-115.7	-142.2	-128.1	3.5

※実験順番8及び15については、深夜のため、アンテナを設置したのち、次の日の朝まで計測したため、計測時間が長くなった。

(3) 捕捉した衛星数による影響

捕捉衛星数と計測値との関係を、図-7.8.2に示す。横軸は捕捉衛星数、縦軸はX(南北) 方向、Y(東西)方向、Z(高さ)方向の3方向の座標値、青点は計測値である。図-7.8. 2では、3方向とも捕捉衛星数が多いほど計測値のバラツキ(縦軸方向の変動幅)は小さく、 X方向はY、Z方向に比べてバラツキがやや小さくなっていた。

図-7.8.2 捕捉衛星数と計測値との関係(左:X(南北)方向、中:Y(東西)方向、右:Z(高さ)方向)

DOP値と計測値との相関関係を、図-7.8.3に示す。横軸はDOP値(精度低下率)、縦軸は3方向の座標値、青点は計測値である。図-7.8.3では、X(南北)方向、Z(高さ) 方向はDOP値と計測値のバラつき(縦軸方向の変動幅)に大きな差はなく、Y(東西)方 向ではDOP値:4を挟んでバラツキの差が顕著であった。

図-7.8.3 DOP値と計測値との関係(左:X(南北)方向、中:Y(東西)方向、右:Z(高さ)方向)

捕捉衛星数
→計測に利用する衛星の数である。GPSにより三次元的な位置を決定するには少なくとも4個の衛
星から信号を受ける必要がある。捕捉した衛星数が多いと、安定してGPS測位を行うことができる。
また、衛星数が少ないと、GPS測位の精度が低下する。
DOP値(dilution of precision)
→精度低下率という。天空におけるGPS衛星の幾何学的配置によって単独測位、相対測位とも
測位精度が影響を受ける。その度合いを示す数値で、DOP値(精度低下率)1に対して値が大
きいほど精度が低くなる。精度低下率の値はGPS衛星の位置によって左右され、上空に衛星が
まんべんなく配置されていると、精度が高くなる。

同一の時間帯、X(南北)方向、Y(東西)方向、Z(高さ)方向の方向別に、GPSの変位 量、捕捉衛星数、DOP値を併記したものを、図-7.8.4~図-7.8.6に示す。X、Y方向に 比べて、Z方向の変位量の変動幅が顕著に大きいものの、変位と捕捉衛星数・DOP値と の関係に明らかな違いは見られなかった。

図-7.8.4 捕捉衛星数とDOP値の日変動(X(南北)方向)

図-7.8.5 捕捉衛星数とDOP値の日変動(Y(東西)方向)

図-7.8.6 捕捉衛星数とDOP値の日変動(Z(高さ)方向)

(4) 近傍に車両が駐車した場合の影響

GPSセンサーの近傍に車両が駐車した場合の影響を検証するため、**写真-7.8.1**に示すように、東・南・西・北の4方向別に、GPSアンテナから離隔距離1m、2m、3mの位置へ、 順次、車両(10トントラック)を駐車させ、計測値への影響を調査した。

写真-7.8.1 実験の状況

図-7.8.7に、車両の駐車による影響について、X(南北)方向、Y(東西)方向、Z(高 さ)方向のGPSセンサー計測結果の標準偏差グラフを示す。図-7.8.7から、下記のと おり遮蔽物がGPSセンサーの計測精度に影響を与えていることがわかった。

- ・遮蔽物が存在する場合、いずれも標準偏差が大きくなっており、遮蔽物が南側に 1 m離れた位置にある場合が最も影響が顕著であった。
- ・Z(高さ)方向は、東・南・西・北の各方向いずれも標準偏差が最も大きかった。
- •X(南北)方向は、遮蔽物が南側1mにある場合が、他に比べて標準偏差が突出し て大きかった。
- Y(東西)方向は、遮蔽物が西側1mにある場合、標準偏差が最も大きいものの、
 他に比べて変動幅は少ない。

図-7.8.7 車両の駐車によるGPS計測値への影響計測結果における標準偏差

図-7.8.8~図-7.8.10には、車両が駐車した場合の影響を検証した東・南・西・北の4 方向の中で、計測値への影響が最も大きかった南方向1m、2m、3m地点の計測結果を示 す。縦軸は、車両駐車前後の計測値の差、横軸は計測時間である。図-7.8.8に示す南 方向1m駐車時は、捕捉衛星数が5~6で推移しつつも受信不能の時間帯には小刻みに 変化し、DOP値も同様に受信不能の時間帯には小刻みに変化しながら、時間の経過 と共に1.5から9へと右肩上がりで上昇していた。計測値は、受信不能の時間帯が概ね 半分近くを占め、特にX(南北)方向、Z(高さ)方向の2方向の変動が大きく、最大 で0.2m程度の変動幅があった。 図-7.8.9に示す南方向2m駐車時は、捕捉衛星数が5~7で推移、DOP値は1~2 の間で推移し、捕捉衛星数が5に低下した時間帯にDOP値が若干上昇したものの、 大きな変動は見られなかった。計測値は、受信不能の時間帯は無かったものの、他の 2方向に比べてZ(高さ)方向の変動が大きく、最大で0.2m程度の変動幅があった。

図-7.8.10示す南方向3m駐車時は、捕捉衛星数が6~7で推移、DOP値は1~2 の間にあり、ほとんど変動が見られなかった。計測値は、受信不能の時間帯は無かっ たが、他の2方向に比べてZ(高さ)方向の変動が大きく最大で0.1m程度の変動幅が あった。

図-7.8.8 VRS車両影響計測(南1m)

図-7.8.9 VRS車両影響計測(南2m)

図-7.8.10 VRS車両影響計測(南3m)

7.8.2 GPSセンサーによる絶対変位計測における異常判定の手法

GPS計測値に各種の統計処理を行い、異常判定に必要な計測時間と処理方法、精度等の 異常判定手法を検討した。

1) 計測結果のフィルター処理

GPS計測値には、変位の他に誤差変位も含まれることから、異常判定を回避するために は、GPS計測値に統計処理を行って、誤差変位成分を取り除く必要がある。但し、GPS 計測値に統計処理を行うことにより、その標準偏差は小さくなるが、処理結果の時間遅れが 大きくなる傾向にある。

ここでは、各種フィルタ(平均フィルタ、べき級数フィルタ、ローパスフィルタ等)を利 用してノイズを低減した上で、変位の判別時間を比較した。その中で精度の高かった30秒平 均フィルタ、30秒一次べき級数フィルタ、50Hzローパスフィルタの処理結果を表-7.8.2 に、 処理結果のグラフ(X方向)を図-7.8.11~図-7.8.15に示す。

表-7.8.2 に示すとおり、30秒平均フィルタ、30秒一次べき級数フィルタ、50Hzローパスフィルタによるフィルタ処理を行うことにより、X、Yの2方向において2.5cm以上の変位を、 Z方向においては5cmの変位を30秒以内に判別することが可能となった。但し、X、Yの2方向(平面方向)に比べて、Z方向(高さ方向)の判別精度が劣っていた。

移動方向		移動量	変位判別時間(秒)					
			平均711月	一次べき級数	ローハ。スフィルタ			
			(30秒)	フィルタ(30秒)	(50Hz)			
南北方向	Х	2.5cm	27	20	9			
		5.0cm	14	8	5			
東西方向	Y	2.5cm	30	30	14			
		5.0cm	17	12	6			
高さ方向	Ζ	2.5cm	×	×	×			
		5.0cm	18	12	6			
		7.5cm	25	20	15			
		15cm	4	6	3			

×--- 判別不可

図-7.8.11 GPS計測値とフィルタ処理後データとの比較(X方向に2.5cm移動)

図-7.8.12 GPS計測値とフィルタ処理後データとの比較(図-7.8.11 〇箇所の拡大)

図-7.8.13 平均フィルタ処理(30秒)における変位判別(X方向に2.5cm移動)

図-7.8.14 一次べき級数フィルタ処理(30秒)における変位判別(X方向2.5cm移動)

図-7.8.15 50Hzローパスフィルタ処理における変位判別(X方向2.5cm移動)

<u>※判別曲線について</u>

- →・演算処理後のデータは平滑化され、誤差変位と段差変位には変位の差が生じる。それらの曲線を過去データと比較すると差分曲線が描ける。その差分曲線から得られる誤差変位を測定したい変位に抑え込むことで誤差変位を判別することが可能である。
 - ・仮に、測定点の T 分前のデータを平均したデータとの差分をとると、誤差変位は5cm以 下となり、5cm判定が可能となる。今回は、誤差変位が○cm以下となる時の曲線を○cm 判別曲線と定義した。
 - ・測定データと判別曲線を並べると、実際に変位が生じた時間で判別曲線が立ちあがり、
 判別が可能であることがわかる。

2) GPSセンサーによる絶対変位の計測における異常判定手法

GPSの計測値は概ね正規分布であるが、実際には衛星の配置や日変動の影響を受け、フ ィルタ処理の回数が多くなるとデータ収集及び処理のため変位の判別に時間を要することと なる。以上のことから、GPSセンサーによる絶対変位の計測における異常判定手法として は、以下の手順で実施することが有効であると思われる。

①事前に、GPSセンサー及び地域の特性を把握するため、1日間以上のデータ計測を 行い、統計処理により当該計測データの特性にあった処理フィルタ(処理回数を含む。) を選定しておく。なお、今回の検討結果では、表-7.8.2に示すように、30秒平均フィル タ、30秒一次べき級数フィルタ、50Hzローパスフィルタを利用した場合、各方向に5cm の変位を30秒以内に判別可能であった。

さらに、統計処理後の計測データから、閾値として $6\sigma \sim 10\sigma$ の値を判定値として用意 する。

図-7.8.16 計測データとフィルタ処理後データとの比較の例

②各センサーから、毎秒のデータを受信する。

③VRSの電子基準点データを利用し、データの補正を行う。

④前後5秒間のデータと比較して特異データを除外し、計測データとする。

⑤上記①で選定した処理フィルタで統計処理を行う。

⑥計測データのフィルタ処理後の値が目標とする変位量を超えた場合、しきい値(6σ~ 10σの間で設定)との対比を行い、さらに画像処理システムによる変位検知結果や、 監視カメラによるリアルタイム映像の目視確認結果等も確認の上、警報の出力を判断 する。

7.9 常時監視システムの概要

ここでは、画像処理システム及びGPSセンサーから構成される常時監視システムの主要機器・構成 ・仕様等の概要を**机上で試作**した。なお、常時監視システムの本格導入にあたっては、一定期間、国道 事務所など道路管理の現場に試験的に導入し、既設の道路管理システムとの適合性の確認や各種ノイ ズの影響等を把握し、その試行結果を踏まえて道路管理の現状に即したシステムや評価基準等の改良 を行う必要がある。

7.9.1 常時監視システムの主要機器・構成

1) 常時監視システムの主要機器・構成

(注)上図の「●●●」は複数(箇所、台数)を意味する。

図-7.9.1 道路橋変状の常時監視システムの主な構成

道路橋変状の常時監視システムを構成する主要機器を表-7.9.1に示す。

No.	機器名称	数量	設置場所
1	GPS センサー(GPS アンテナ、GPS 計測器を一体)	1 式/橋梁	道路橋現地
2	監視カメラ装置(CCTVカメラ)	1式	
3	ターゲットセット (自発光式視線誘導標)	3 台以上/箇所	
4	橋台の背面沈下ターゲット(自発光式道路鋲)	3 台以上/箇所	
5	GPSデータ処理装置	1台	事務所
6	画像処理装置	1台	
7	処理結果蓄積警報出力装置	1台	

表-7.9.1 道路橋梁変状の常時監視システムの主要機器一覧表

2) 計測データの事務所等への伝送方法

(1) 通信回線

本システムでは、一般国道に整備されたデータ伝送設備を利用することを想定する。

(2) 画像データの圧縮方式

データ伝送の効率化を図るため、カメラの映像を圧縮して伝送する必要がある。現段階では、国道の管理カメラはSD映像のカメラであり、MPEG2方式で圧縮して事務所に伝送している。一方、ハイビジョン以上のカメラの場合、ハイビジョン映像のMPEG2の圧縮規格はSD映像のMPEG2の圧縮規格と異なり、既存のエンコーダでは対応していない。さらに、ハイビジョン映像のMPEG2のエンコーダの映像圧縮率が低く、ハイビジョンMPEG2のエンコーダを生産しているメーカは少ない等の課題がある。

以上のことを踏まえ、本システムにハイビジョン以上のカメラを使用する場合には、 映像圧縮の主流であるH.264方式を推奨する。一方、H.264より圧縮率が低いが画像解析に 適しており、更に成熟したMJPEG技術を採用し映像のフレームを低くすることでハイビジ ョン以上の映像を伝送することが可能であるMJPEGも選択肢とする。

H.264方式:

ITU-Tでは「H.264」として、2003年初めに勧告された。ISO/IECでは、ISO/IEC 14496-10 「MPE G-4 Part 10 Advanced Video Coding (通称: MPEG-4 AVC)」として規定されている。どちらも技術的には同一のものであり、ITU-TとISO/IECが共同で策定したため、両者の呼称を「H.264/MPEG-4 AVC」「MPEG-4 AVC/H.264」と併記することが多い。

従来方式であるMPEG-2などの2倍以上の圧縮効率を実現する。携帯電話などの低ビットレート用途から、HDTVクラスの高ビットレート用途に至るまで幅広く利用されることを想定している。

現段階では、4,096×2,048画素30.0フレーム/秒、4,096×2,304画素26.7フレーム/秒の方式を 対応している規格である。 MJPEG:

それぞれのフレームをJPEG形式で圧縮/伸長し、連続でこれを表示することで動画としている。 MPEGとは異なり、フレーム間の圧縮を行わない。そのために圧縮率は低くなるものの、圧縮/ 展開が容易で、ソフトウェアやハードウェアのパワーをMPEGほど必要とはしない。また任意のフ レームを切り出すことが出来るので、編集を容易に行うことができる。

近年では、Motion JPEG 2000やMotion JPEG XRといった高性能な動画形式も開発されている。

7.9.2 異常判定及び警報出力の方法

1) 異常判定の方法

下記①②の判定結果から、常時監視システム上の警報を出力する。なお、実際の緊急点検 ・応急措置に関する警報発令にあたっては、監視カメラによるリアルタイム映像の目視確認 結果等を含めて判断することとする。

①GPSセンサーによる絶対変位計測における異常判定の手法

7.8.2 2) に記載のとおり

②画像処理システムによる相対変位計測における異常判定の手法

7.6.4 1)(2) に記載のとおり

2) 警報の出力方法

警報の出力方法としては、以下のようなものが考えられる。
①事務所に専用パトライトを設け、発令時に点灯させる。
②担当職員へのメール送信機能
③担当職員のPC端末にポップアップ画面の表示機能
④担当職員への電話連絡機能

7.9.3 主な機器の仕様

以下に、**机上で試作**した常時監視システムの主な構成機器の仕様を示す。なお、仕様内 に【常時監視システム仕様】と明記している部分は、本研究に係る常時監視システムの特 殊仕様である。明記していない部分は、一般的な機器仕様である。

1) GPSセンサー

GPSセンサーとは、GPSアンテナ、GPS計測器を一体にしたものをいう。

【常時監視システム仕様:通常のリアルタイムキネマティック方式GPS装置を想定】

①捕捉衛星	G P S	
②受信信号	L1搬送波:1575.42MHz、C/Aコード:1,023Mbps	
	L2搬送波:1227.60MHz、Pコード:10.23Mbps	

③測位方式	リアルタイムキネマティック方式
④位置精度	水平:2周波±(10mm+1ppm)×D
	垂直:2周波±(15mm+1ppm)×D
	D: 基線間距離
⑤外形寸法	φ190×H120mm以下
⑥ 質量	2kg以下(バッテリ含む)
⑦インターフェース	LANポートを1つ以上有すること
⑧構造	JIS C 0920の保護等級IPX7に準拠すること

2) 監視カメラ装置(ССТVカメラ)

(1)	カメラ本体	
	①撮像素子	以下のタイプから選択すること
		単板CCD(カラー)、三板CCD(カラー)
		単板CMOS(カラー)、三板CMOS(カラー)
		単板MOS(カラー)、三板MOS(カラー)
	②有効画素数	約38万画素以上(ただし、監視可能な範囲は画素数に依存して
		いることから、できるだけ高画素(例:約190万画素以上)の
		ものが望ましい)【常時監視システム仕様】
	③解像度	水平:480本以上(ただし、監視可能な範囲は解像度に依存し
		ていることから、水平:1,080本以上が望ましい)【常時監視
		システム仕様】
	④最低被写体照度	電子感度OFF 4Lux以下
		電子感度ON 1Lux以下
(2)	レンズ	
	①ズーム比	レンズ単体 6倍以上

山スーム比	レンス単体 0倍以上
②画角	水平 41°~9°の範囲を含むこと
	垂直 31°~7°の範囲を含むこと
③ズーム機構	電動制御
④明るさ	F1.8の明るさ以上
⑤露出調整機構	オートアイリス
⑥フォーカス機能	オートフォーカス

(3) カメラケース

①材質	アルミニウム合金またはステンレス鋼板
2構造	防雨型 (JIS C 0920)
③その他	ワイパー&デフロスタ付き(オプション:ヒータ付き)
	塗装(メーカ標準塗装)
	盗難防止対策を施すこと。

(4) 旋回装置

①材質	アルミニ	ウム合金又はステンレス鋼板
②構造	防噴流形	(JIS C 0920)
③旋回角度	水平:36	60°エンドレス
	垂直:+	20°~-70°以上
④旋回速度(プリセッ	ト時)	最大水平速度:180°/秒以上
		最大垂直速度:60°/秒以上
⑤旋回速度(マニュア)	ル時)	水平・垂直3°/秒以下の設定ができること。
		最大速度(マニュアル時)までの間で、速度
		を段階的(3段階以上)に設定できること。
⑥静止精度 ±0.3°	以下	
⑦その他	ヒータ付	き (ON/OFF制御は自動)
	塗装(メ	ーカー標準塗装)
	旋回装置	と支柱又は架台等を取り付けるボルトには、盗難防止

- 対策を施した特殊ボルトを使用すること。
- ⑧プリセット機能 有り
- (5) 画像符号化装置 (エンコーダ)

①画像符号化方式	MPEG2(約38万画素クラスの動画を転送可能な方式を採用する場合)		
	H264または MJPEG (ハイビジョン動画を転送可能な方式を採用する場合)		
②音声符号化方式	AAC		
③符号化レート	1.0M \sim 16Mbps		
④画像のフレームレー	-ト 1フレーム/秒~30フレーム/秒		
⑤機能	カメラ等から映像をMPEG2、H264またはMJPEG画像信号に変換し		
	IPマルチキャストによる画像配信が可能であること。		

- 3) ターゲット
- (1) 自発光ターゲット(自発光視線誘導標)
 ①ターゲット種類 自動発光タイプ
 ②ターゲットサイズ 80mm以上(カメラとの離隔距離・カメラ解像度に合わせてサイズを調整する。サイズを大きくした方が検出しやすくなる。)
 【常時監視システム仕様】

※ターゲットの背景に光の反射物等がある場合は、ターゲ ットの周りに遮蔽体を付けた方が良い。

③色

④光量

- 赤色 6×<u>S</u>²(ここのSはカメラとの距離)【常時監視システム仕様】
- ⑤点滅周期 点灯:消灯の時間比=1:1【常時監視システム仕様】
- ⑥ 点灯の周期 1Hz程度 ※⑤⑥については、常時点灯も可。
⑦利用温度 -20℃~+60℃

(2) 自発光ターゲット(自発光道路鋲)

橋台背面の沈下を監視する場合に、使用可能。

①ターゲット種類 自動発光タイプ(太陽電池式、夜間自動発光・自動点消灯(800 Lux以下自動点灯開始))

②サイズ 横100×幅120×高18mm以上(露出部)(カメラとの離隔距離・ カメラ解像度に合わせてサイズを調整する。サイズを大きくし た方が検出しやすくなる。)【常時監視システム仕様】

③色 赤色

④光量	2200cd以上		
⑤点滅周期	点灯:消灯の時間比=1:1【常	時監視システム仕様	
⑥点灯の周期	1Hz程度	※⑤⑥については、貧	常時点灯も可。
⑦利用温度	$-20^{\circ}\mathrm{C} \sim +60^{\circ}\mathrm{C}$		

4) LANスイッチ

LANスイッチは、国土交通省のネットワークにGPSセンサー、監視カメラ装置を接続する 装置である。

①装置種別	L2-SW			
②対応標準	1000BASE-T/100BASE-TX/10BASE-Tインターフェース			
	伝送速度	10Mbps/100Mbps/1000Mbps以上		
	スイッチング方式	ストア&フォワード方式		
③準拠規格	IEEE802.3 10BASE-T			
	IEEE802.3u 100BASE-TX			
	IEEE802.3ab 1000BASE-T			
	IEEE802.3x Flow Contro	1		
	IEEE802.1D Spanning Tr	ee (STP Compatible)		
	IEEE802.1w Rapid Spann	ing Tree		
	IEEE802.1Q VLAN Taggin	I. Contraction of the second se		
	IEEE802.1p Class of Se	rvice, priority protocol		
	IEEE802.1X Port Based	Network Access Control		
④ポート形状	RJ45コネクタ 4口以上			
	SFP接続用ポート 2ポート			
⑤管理機能	SNMP (MIB2)			
⑥運転条件	24時間連続運転可能なもの	のとする。		
②電源	AC100V 50/60Hz電源内毒	藏型		
	消費電力100VA以内			

GPSデータ処理装置

GPSデータ処理装置は、サーバにて構成するものとする。本装置は、LANスイッチに接続 し、国土地理院から補正情報を受信し、各種GPSアンテナから受信した計測情報を補正し、 管理、蓄積する。

①装置構成	ラックマウント型 サーバマシン
	24時間連続稼動を可能とする。
2)CPU	インテル Xeon プロセッサー 2GHz以上
③主記憶部	4GB以上
④ハードディスク	有効容量300GB以上
	ホットスワップ対応ミラーリングディスク対応
	フロントメンテナンス機構
⑤表示出力部	表示ドット数1280×1024以上
	フルカラー表示出力(1677万色程度)
	アナログまたはデジタル出力
⑥通信I/F部	情報系LAN
	通信部 1000BASE-T/100BASE-TX/10BASE-T
⑦その他	USBインターフェース
⑧処理機能	信頼性があり、高速、多重処理が可能なこと。
	セキュリティ機能およびウィルスチェック・除去機能
	SNMP機能 (MIB2)
⑨外部記録装置	DVD-ROM
⑩電源	AC100V
⑪その他	KVM切替器に接続できること。調達後5年間以上保守対応。

6) 画像処理装置

画像処理装置は、サーバにて構成するものとする。本装置は、L2-SWに接続し、国土交 通省のネットワークを経由し、現場カメラの配信映像を受信し、ターゲットの変状を抽出 する装置である。

①装置構成	ラックマウント型 サーバマシン
	24時間連続稼動を可能とする。
(2) CPU	インテル Xeon プロセッサー 2GHz、4コア以上
③主記憶部 16GB以上	:
④ハードディスク	有効容量1TB以上
	ホットスワップ対応ミラーリングディスク対応
	フロントメンテナンス機構
⑤表示出力部	表示ドット数1920×1200 (WUXGA (Wide-Ultra-XGA))以上
	フルカラー表示出力(1677万色程度)
	アナログまたはデジタル出力

⑥通信I/F部	情報系LAN			
	通信部 1000BASE-T/100BASE-TX/10BASE-T			
⑦その他	USBインターフェース			
⑧処理機能	信頼性があり、高速、多重処理が可能なこと。			
	セキュリティ機能およびウィルスチェック・除去機能			
	SNMP機能 (MIB2)			
⑨外部記録装置	DVD-ROM			
⑩電源	AC100V			
⑪その他	KVM切替器に接続できること			
	調達後5年間以上保守対応			

7) 処理結果蓄積警報出力装置

処理結果蓄積警報出力装置は、サーバにて構成するものとする。本装置は、L2-SWに接続し、GPSデータ処理装置、画像処理装置から、橋梁の変状結果を収集・管理する。 変状が発生した判断した場合、パトライトランプ等を点灯させ、担当職員にメールを送信 する機能を有する。

①装置構成	ラックマウント型 サーバマシン
	24時間連続稼動を可能とする。
(2) CPU	インテル Xeon プロセッサー 2GHz以上
③主記憶部	16GB以上
④ハードディスク	有効容量300GB以上
	ホットスワップ対応ミラーリングディスク対応
	フロントメンテナンス機構
⑤表示出力部	表示ドット数1280×1024以上
	フルカラー表示出力(1677万色程度)
	アナログまたはデジタル出力
⑥通信I/F部	情報系LAN
	通信部 1000BASE-T/100BASE-TX/10BASE-T
⑦その他	USBインターフェース
⑧処理機能	信頼性があり、高速、多重処理が可能なこと。
	セキュリティ機能およびウィルスチェック・除去機能
	SNMP機能 (MIB2)
⑨外部記録装置	DVD-ROM
⑩電源	AC100V
⑪その他	KVM切替器に接続できること、調達後5年間以上保守対応

7.10 常時監視システムによる効果の試算

膨大な数の被災パターン毎に効果は異なるため、今回は、大規模地震によって道路橋の橋 台背面に上下線の車両通行が困難となる段差が発生したと仮定し、「常時監視システム有りの 場合」と「常時監視システム無しの場合」について、緊急パトロール車が被災想定橋梁に到 達するまでの所要時間と影響を受ける利用交通量を試算し比較することとした。

1) 対象区間(路線)

·一般国道20号(東京23区内区間(東京国道事務所管理))

2) 試算条件

- ・昭和55年以前に架設された橋梁(7橋)を、今回の試算上、被災想定橋梁に設定。
- ・「常時監視システムが無し」の場合は、大規模地震発生直後(平日・勤務時間内)の緊急 パトロールコース(平成25年度)を使用。
- ・移動速度は、平成22年度道路交通センサスの混雑時平均旅行速度を使用。
- ・通行者等からの通報は、無し。

3) 試算方法

図-7.10.1に、大規模地震発生直後の緊急パトロールコースと今回の被災想定橋梁(昭和55 年以前に架設された橋梁(7橋))の位置図を示す。

図-7.10.1 大規模地震発生直後の緊急パトロールコースと今回の被災想定橋梁の位置図

基地から被災想定橋梁に向かうコースは、「常時監視システム無しの場合」、図-7.10.2に示 すように、大規模地震の発生直後すみやかに、所定の緊急パトロールコースをパトロール車 が順次点検しながら被災想定橋梁を発見するものとし、「常時監視システム有りの場合」は、 上記の緊急パトロールとは別に、管理事務所で常時監視システムにより被災想定橋梁を発見 し、図-7.10.3に示すように緊急車輌を被災想定橋梁に直行させるものとした。

到達時間の比較にあたっては、被災想定橋梁:1橋毎に、「常時監視システム有りの場合」 と「常時監視システム無しの場合」について、上記のコースにより緊急パトロール車が被災 想定橋梁に到達するまでの所要時間を計算し、両者の差を求めた。なお、平均効果について は、被災想定橋梁:1橋毎の到達時間の差を合計し、それを橋梁数で単純平均して算出した。

図-7.10.2 「常時監視システム無しの場合」(緊急パトロールコースにより順次点検)

図-7.10.3 「常時監視システム有りの場合」(基地から被災橋梁に直行)

4) 試算結果

(1) 到達時間の比較

被災想定橋梁別の到達時間の差(試算結果)を、表-7.10.1に示す。「常時監視システム有 りの場合」は、管理事務所で常時監視システムにより被災想定橋梁を発見し、図-7.10.3に示 すように緊急車輌を被災想定橋梁に直行させることができるため、被災橋梁への到着時間の 短縮(最大:61分、平均:17分)、利用交通量への影響の減少(約5,900台(約4%))を図る ことが可能となる。

緊急パトロールの順序		常時監視システム無し (緊急パトロールのコース)		常時監視システム有り (被災橋へ直行)		到達時間	
点検順序	進行方向	橋梁名	基地からの 距離 (km)	基地からの 移動時間(分)	基地からの 距離 (km)	基地からの 移動時間 (分)	の差(分)
スタート		中野基地	0	0	0	0	
1	上り	大原陸橋	4.2	11	4.2	11	0
2	上り	幡ヶ谷陸橋	5.4	15	5.4	15	0
3	上り	初台陸橋	6.9	19	6.9	19	0
4	上り	新宿跨線橋	8.4	24	8.4	24	0
5	上り	四ッ谷見附跨線道路橋	11.2	35	11.2	35	0
《桜田門交差点で折り返し》							
6	下り	松原和泉陸橋	23.9	74	4.9	13	61
7	下り	松泉橋	24.3	75	5.3	14	61
合計(7橋)		84.3	253	46.3	131	122	
合 計(1橋あたり)		12	36	7	19	17	

表-7.10.1 被災想定橋梁別の到達時間の差(試算結果)

①最大効果

表-7.10.2に、最も時間差のある被災想定橋梁までの到達時間を示す。常時監視システムの利用により、到達時間が61分(81%)の短縮となる。

常時監視システムの有無	被災想定橋梁まで	被災想定橋梁までの	短縮時間
	の距離	所要時間	
無し	24.3km	75分	-61分
有り	5. 3 km	♥14分	(-81%)

表-7.10.2 最も時間差のある被災想定橋梁までの到達時間の差

②平均効果

表-7.10.3に、全ての被災想定橋梁(7橋)までの到達時間の合計と1橋あたりの平 均到達時間(単純平均)を示す。常時監視システムの利用により、到達時間が合計で 122分(48%)、1橋あたり(単純平均)で17分(47%)の短縮となる。

常時監視システムの有無	被災想定橋梁(短縮時間	
	合 計	1橋あたり(単純平均)	(1橋あたり)
無し	253分	36分	-17分
有り	131分	◆ 19分	(-47%)

表-7.10.3 全ての被災想定橋梁(7橋)までの到達時間の差

(2) 到達時間の差(単純平均)によって影響を受ける利用交通量

表-7.10.4に、到達時間の差(単純平均)によって影響を受ける利用交通量を示す。 常時監視システムの利用により、影響を受ける利用交通量(約5,900台(約4%)) の減少が可能となる。

式 7.10.1 当是時間の左(平純十号)にの J Cが 目 と C の の 加入 塩土							
時間差の生じ	常時監視シス	交通量	到達時間	時間差	影響を受ける交通量(台)		
た被災橋	テムの有無	(台/日)	(分)	(分)	₩1		
					計	合 計	
松原和泉陸橋	無し	57, 536	74	-61	2,437		
	有り		♦ 13	(-82%)	(4%)	5, 853	
松泉橋	無し	80, 644	75	-61	3, 416	(4%)	
	有り		♦ 14	(-81%)	(4%)		

表-7.10.4 到達時間の差(単純平均)によって影響を受ける利用交通量

※1 --- 影響を受ける交通量=1日あたり交通量×時間差/24時間

7.11 **今後の課題**

1) 画像処理システム

(1) 利用交通量の多い橋梁での試行による各種ノイズの把握、対応等の検討

- ・今回の検証実験を行った実橋は利用交通量が少なかったため、通行車両による影響 (例:走行風、振動、間断なく続くヘッドライト、渋滞によるターゲット視認の阻害 等)や夜間照明柱による影響等を十分把握するまでには至らなかった。今後、利用交 通量の多い橋梁において、さらなる試行により、これら各種ノイズの把握と対応等の 検討を行う必要がある。
- (2) 既設の道路管理システムへの適合性等の確認
 - ・本研究では、既設の道路管理用CCTVカメラ等の道路管理ネットワークに接続しての検証を実施することができなかった。また、常時監視システムの機器・構成は机上での試作である。よって、常時監視システムの本格導入にあたっては、一定期間、国道事務所など道路管理の現場に試験的に導入し、既設の道路管理システムとの適合性の確認や各種ノイズの影響等を把握し、その試行結果を踏まえて道路管理の現状に即したシステムや異常判定基準等の改良を行う必要がある。

- (3) 構造物の種類・状況等に応じたカメラ等配置計画の策定
 - ・本研究では道路橋を対象としたが、構造物の種類・位置・形状・周辺環境等によって 常時監視システムの設置方法等は異なることから、設置を予定する構造物の種類・状 況等に応じたカメラ等配置計画の策定が必要。

2) GPSセンサーによる絶対変位計測

- (1) 利用交通量の多い橋梁での試行による設置方法、各種ノイズの把握、対応の検討
 - ・本研究は、フィールドでの計測のみであり、実橋での検証を実施することができなかった。今後、実橋での試行により、GPSセンサー(キネマティック測位方式)の設置方法(盗難対策を含む。)、通行車両等による影響(例:振動等)の把握と対応について検討を行う必要がある。
- (2) 既設の道路管理システムへの適合性等の確認
 - ・本研究では、基準点の相違による計測値の誤差補正に用いるVRS方式は、現地での GPSセンター単体での試行であったため、VRS方式を既設の道路管理ネットワー クに接続し、複数のGPSセンサーを同時稼働することによる利用状況の検証は行え ていない。また、常時監視システムの機器・構成は机上での試作である。 よって、常時監視システムの本格導入にあたっては、一定期間、国道事務所など道路 管理の現場に試験的に導入し、既設の道路管理システムとの適合性の確認や各種ノイ ズの影響等を把握し、その試行結果を踏まえて道路管理の現状に即したシステムや異 常判定基準等の改良を行う必要がある。
- (3) 構造物の種類・状況等に応じたカメラ等配置計画の策定

·上記1)(3)と同様

参考文献

 例えば、金柿主悦、川野和昭、木下紀正:ビデオカメラによる近赤外画像の利用研究、 鹿児島大学教育学部研究紀要. 自然科学編Vol.55、pl1-24 、2004.2
例えば、池田 光二、吉田 昌司、中島 啓介、桂 晃洋、依田 晴夫:パターンマッチン グの高速化手法について、画像電子学会研究会講演予稿第156巻 p5-8、1997.3