3-1 降水量予測情報の精度評価

3-1-1 概要

これまでわが国の水管理において、降水量の予測情報は精度上の問題から十分活用されていなかった。しかし、近年、気象衛星等による気象観測が充実するとともに、気象予測モデルの進歩等により降水量の予測精度が向上しつつある。そこで、北上川、利根川、木曽川、阿賀川、淀川、吉野川、筑後川の7水系の部分流域を対象に、高精度化された降水予測の水管理への適用可能性について検討を行った。

3-1-2 本研究で使用した気象庁の降水量予測情報

本研究では、降水短時間予報(VSRF)、メソ数値予報モデル(MSM)、領域数値予報モデル(RSM) を使用して、降水量予測情報の精度評価を行った。研究で使用した当時の降水量予測情報の仕様 を表 3-1-1 に示す。なお、平成 18 年 3 月のスーパーコンピュータ更新に伴い、降水短時間予報 (VSRF)及びメソ数値予報モデル(MSM)については、予報の高密度化等が図られている。

	降水短時間予報	メソ数値予報モデル	領域数値予報モデル
	(VSRF)	(MSM)	(RSM)
空間格子間隔	約 5km	約 10km	約 20km
更新時間間隔	0.5 hr	6hr	12hr
最大先行時間	6hr	18hr	51 hr

表 3-1-1 本研究で使用した気象庁の降水量予測情報

3-1-3 実測雨量と予測雨量の比較

降水量予測情報のダム管理上の用途としては、① 洪水予測演算に用いる入力降雨としての用 途、② 洪水警戒態勢への移行、予備放流を含む洪水調節計画立案、放流警報の実施などの判断 支援のための用途、が挙げられる。前者は時間単位での精度が要求されるのに対して後者では 大略の降雨規模をとらえることがより重要になるものと考えられる。これらを把握するため、 北上川、利根川、木曽川、阿賀川、淀川、吉野川、筑後川の7水系の部分流域の214箇所の雨 量観測所の実測雨量と予測雨量との比較を時間雨量と連続雨量とについて行い、それぞれの予 測精度の分析を行った。

(1)時間雨量の比較

予測精度は次の相関係数および回帰係数を指標としての評価するものとした。実測雨量と予 測雨量の比較では、相関係数が1に近い程、波形の相似度が高く、かつ回帰係数が1に近けれ ば、波形の一致度が高いこととなる。 相関係数 $\rho = \mathbf{S}_{xy} / [\mathbf{S}_{xx} \cdot \mathbf{S}_{yy}]$

回帰係数 a = S_{XY} / S_{XX}

 $S_{xy} = \Sigma (X - X_m) (Y - Y_m).$ $X_m = \Sigma X / n$

 $S_{XY} = \Sigma X \cdot Y.$

ここに、X:実測雨量、Y:予測雨量、n:標本数である。サンプリングは実測雨量、予測 雨量のいずれかが所定の閾値を超過する組み合わせで行うこととした。

3 ケースのサンプリングの閾値のもとでの予測の先行時間と相関係数・回帰係数の関係を示 したものが図 3-1-1 である。図中、太線は全地点・全予測の平均を、上下の細線は最も指標値 が大きい、あるいは最も指標値が小さい調査エリアの平均を表す。同図から読み取れる事項は 以下のとおりである。

- ・先行時間が増加すると予測時間雨量と実測時間雨量の相関係数が減少する。
- ・降水短時間予報(VSRF)は2 時間先まで同程度の相関係数を示すが、その後は急激に減少 する。また、サンプリングの閾値を1mm(少雨)とした場合は3時間先の予測まで相関 係数が0.4以上となるが、これを5mm(雨)にすると、相関係数が0.4以上となるのは2 時間先までとなる。さらに、これを10mm(やや強い雨)にすると1時間先でも相関係数 が0.4を下回る。なお、メソ数値予報モデル(MSM)、領域数値予報モデル(RSM)はサンプ リングの閾値によらず、いずれの先行時間に対しても相関係数が0.4を下回る。
- ・降水短時間予報(VSRF)の回帰係数は3時間先予測から急激に減少する。メソ数値予報モ デル(MSM)、領域数値予報モデル(RSM)の回帰係数は先行時間とともに回帰係数が緩やか に減少する。
- ・サンプリングの閾値によらず回帰係数と先行時間の関係は変わらない。
- ・回帰係数がもっとも大きい降水短時間予報(VSRF)の1,2時間先の予測値でも平均値で0.65 程度となっている。

以上より、比較的、安定的な時間雨量の予測値を与えるのは降水短時間予報(VSRF)の2時間先までの予測情報が限度と考えることができる。ただし、37~48時間前の領域数値予報モデル(RSM)でも高精度の予測がなされているケースもあり、長時間の洪水予測を行うことにはそれなりの意味がある。

(2)積算雨量の比較

毎回の予報について雨量観測点の連続雨量(メソ数値予報モデル(MSM):6/12/18時間雨量、 領域数値予報モデル(RSM):6/12/18/24/36/48時間雨量、参考としてメソ数値予報モデル (MSM)と同時期の降水短時間予報(VSRF)の6時間雨量)を求め、同期する実測雨量の 6/12/18/24/36/48時間雨量との相関係数・回帰係数を計算した。サンプリングの閾値は1mm、 50mm、100mmの3ケースとした。

降雨継続時間と相関係数・回帰係数の関係を示したものが図 3-1-2 である。同図から読み取 れる事項は以下のようである。

- ・サンプリングの閾値を大きくすると連続雨量の相関係数が小さくなる。
- ・降雨予測法・降雨継続時間によらず相関係数はほぼ一定値をとる。なお、閾値 100mm の ケースの領域数値予報モデル(RSM)の6時間雨量は特異的に大きな値となっているが、こ

れは他の組み合わせに対して標本数が少ないことに拠る。

・回帰係数はサンプリングの閾値によらず、降水短時間予報(VSRF)の6時間雨量が0.7前後、他は0.4~0.5の値となっている。ただし、特に、領域数値予報モデル(RSM)で地域格差が大きい。いずれにしても、すべての降雨予測法で実績に対して少なく見積もる傾向にある。

連続雨量の予測は地域や降雨イベントによって精度のばらつきが大きく安定性に欠くため、 洪水調節計画等の支援情報としては難がある。反面、場合によっては高精度の予測がなされて おり、監視情報としての利用価値は十分にある。

(3)流域平均雨量の比較

実際の河川管理、ダム管理では、特定の地点での雨量が問題になることは稀で、ダムの上流 域や基準点上流域といったある領域での平均雨量に着目する場合が多い。このため、北上川、 利根川、木曽川、阿賀川、淀川、吉野川、筑後川の7水系の部分流域を対象に、流域平均雨量 の実測雨量と予測雨量の比較を行った。

連続雨量での実測・予測の流域平均雨量の比較結果を図3・1・3に示す。流域平均量をとると、 点雨量(図3・1・2)に比べて、領域数値予報モデル(RSM)では相関係数が大きくなる(閾値1mm の場合 0.6→0.8、閾値 50mm の場合 0.4→0.6)。一方、メソ数値予報モデル(MSM)の12 時 間雨量、18 時間雨量の相関係数が小さくなる。

閾値:5mm

閾値:10mm

図 3-1-1 時間雨量の相関係数・回帰係数

注1) 太線は全地点全降雨による指標値、上下の細線は最も精度が良いあるいは悪い流域での指標値(全降雨平均)を表す。

注 2) MSM、RSM は先行時間の最大値でプロットしてある。例えば、MSM の場合、1~6時間前の予測に対する指標値を先行時間6時間の位置にプロットしてある。

閾値:50mm

閾値:100mm

図 3-1-2 連続雨量の相関係数・回帰係数

注) 太線は全地点全降雨による指標値、上下の細線は最も精度が良いあるいは悪い流域での指標値(全降雨平均)を表す。

閾値:50mm

閾値:100mm

図 3-1-3 連続雨量(流域平均)の相関係数・回帰係数

注)太線は全地点全降雨による指標値、上下の細線は最も精度が良いあるいは悪い流域での指標値(全降雨平均)を表す。

3-2-1 概要

現在、河川の洪水・低水流出計算は、主に雨量観測所や水位観測所の実測値等を用いているが、 面的な降水量観測情報および降水量予測情報を活用するモデルにより、河川流量の予測精度の 向上と予測時間の長期化を計ることが必要である。このため、洪水予報やダム管理など、河川 管理実務での使用を念頭に置いたリアルタイム流出予測のための分布型流出モデルを作成した。

3-2-2 対象流域・対象洪水の選定

(1)対象流域の選定

分布型モデルを用いての計算労力及び検討目的である管理施設(ダム,流量観測施設,洪水予 測地点)等の条件等に鑑み、①流域面積 1,000 km程度、②ダムを含む流域、③流域内の複数 の地点で洪水流量観測が行なわれている、④流域内の複数の地点で洪水予測が行なわれてい る、という条件を満たす流域として、筑後川上流域(小渕上流域)を対象流域として選定した。

項目	内容等	備考
流域面積	• $CA = 1120.8 \text{km}^2$	筑後川全流域:2,860 km²
	(筑後川本川流域:594.8 km ²) 支川玖珠川流域:526.0 km ²)	基準点(荒瀬)上流域:1,443 km²
ダム	・下筌ダム:185 km²	全て筑後川本川筋
	・松原ダム:491 km²	
洪水流量	・小平(筑後川本川:CA=533.7 km²)	
観測	・小渕(筑後川本川:CA=1120.8 km²)	
	・小ヶ瀬(玖珠川:CA=530.5 km²)	
	・下筌ダム(筑後川本川 : CA=185.0 km²)	
	・松原ダム(筑後川本川:CA=491.0 km²)	
洪水予測	・小平(筑後川本川:CA=533.7 km²)	
地点	・小渕(筑後川本川:CA=1120.8 km²)	
	・小ヶ瀬(玖珠川:CA=530.5 km²)	

表 3-2-1 対象流域(筑後川上流域)の流域条件

(2)対象洪水の選定

降雨データ(レーダ解析雨量、予測雨量)が完備している期間で、洪水規模が大きかった以 下の3洪水を選定した。

- ・1999年(H11)6月25日洪水(6月24~27日)
- ・2001年(H13)6月29日洪水(6月28~30日)
- ・2003年(H15)7月12日洪水(7月12~14日)

	小渕		小ヶ瀬		之村					
	(筑後川:玖珠	\$川合流後)	(玖珠川)		(筑後川:玖珠川合流前)					
	流量(m ³ /s)	発生日	流量(m³/s)	発生日	流量(m ³ /s)	発生日				
1999 年(H11)	2, 484	6/25	1,636	6/25	1,034	6/25				
2001 年(H13)	1,587	6/29	977	7/6	913	6/29				
2003年(H15)	1,950	7/12	1,140	8/8	938	7/12				

表 3-2-2 対象洪水と各地点の流量

図 3-2-1 対象流域(筑後川流域)位置図

3-2-3 流出予測モデルの構造設計

(1)既存の分布型流出モデルの特徴

既存の流出計算モデルを表 3-2-3 に示す。

分布型流出モデルは、地形等の流域要素をメッシュで表現するモデルの他、斜面要素 の集まりで表わすモデルがある。

降雨流出の計算においては、既存モデルでは、①kinematic wave で扱う方法、②飽 和浸透流で扱う方法、③飽和、不飽和浸透流で扱う方法、④タンクモデル等集中型モデ ルで用いられている流出モデルによる方法(の組み合わせ)が用いられている。

河道流は、いずれの分布型流出モデルにおいても、kinematic-wave 法が用いられている。

(2)流出予測モデル基本構造の設定

1)基本とするモデル

現場において流出予測を行うに当たり、①流出の再現性に優れていること、②パラメ ータの同定が容易なこと、③全国の河川に適用可能なこと、④計算時間が短いこと、⑤ 安定した予測計算が行えること、という要件を満たすことが必要であり、本研究では、 これらの要件を満たす、早川・陸・小池によって提案された分布型流出モデルを基本モ デルとした。

このモデルの特徴を列挙すると、以下のとおりである。

- ・洪水流出期間における表面流、中間流を簡易に表現できること
- ・モデルのパラメータが少ないこと
- ・パラメータの設定に既存の集中型モデルで蓄積された知見が利用できること
- ・計算時間が短いこと
- ・我が国の複数河川流域に適用実績があり、洪水流出の再現性が確認されていること

2)フィードバック手法

次の理由から、モデルのパラメータを修正する方式のフィードバック手法は採用せず、 予測計算値を逐次修正する方式を採用する。

- ①分布型モデルは降雨の時空間分布を直接計算に考慮していることから、集中型モデルと異なり降雨の時空間分布による誤差は無視できる。
- ②モデルのパラメータは事前の同定・検証により決定され、それを用いた洪水の再現 性は確認されている。
- ③たとえば、全域一様の流出率のようなパラメータを逐次修正することも考えられる が、一義的に決定することができないため繰り返し計算が必要となり計算時間が長 くなる。また、複数地点の流量に計算値を一致させる場合、H-Q 式の精度や河道流 下時間の推算誤差によって上下流の収支がとれず、パラメータの合理的な修正が不 可能になることが想定される。

国内/海外	外国内での開発モデル										海外での開発モデル											
モデルの適用	高水(のみを対象とする短 長期流出の表現が制	期モデル 別約)				低水/ (水循環	高水両用 【系モデル)				高木のみを対象とする短期モデル 低水/高水両用 (長期流出の表現が制約) (水循環系モデル)										
モデル名 (略称)	土研モデル2	CELL分布 京都大学	集中化高棹・椎 葉モデル		土研モデル3	土研モデル1	BTOPMC	WEPM	Hydro-BEAM	PDE	SHER	HEC-1	AGNPS	RORB	MIKE11	MOUSE NAM	MIKE SHE	CREAMS	HSPF	NWSRF	TOPMODEL	SHE/SHESED
国別	日本	日本	日本	日本	日本	日本	日本	日本	日本	日本	日本	米国	米国	オーストラリア	デンマーク	デンマーク	デンマーク	米国	米国	米国	英国	英国
提案者	鈴木俊朗、寺 川陽、松浦達 郎	立川康人、實馨	市川、椎葉ら	早川・陸・小池	深見和彦、金 木誠、寺川陽	吉野文雄、吉谷 純一、堀内輝亮	山梨大学 竹内邦良ら	河原・末次・賈・ 倪	小尻利治ら	虫明功臣、へ ラート、日本工 営(株)	雨水協	米国陸軍省 工兵隊	米国農務省	Monash大学	デンマーク 水理研究所	デンマーク 水理研究所	デンマーク 水理研究所	米国農務省	米国環境保護庁	米国国家気象 サービス	Lancaster大学	Newcastle大学
分類	分布型	分布型	斜面要素型	分布型	斜面要素型	分布型	分布型	分布型	分布型	分布型	斜面要素型	斜面要素型	分布型	斜面要素型	斜面要素型	斜面要素型	分布型	集中型	斜面要素型	斜面要素型	斜面要素型	分布型
開発目的 開発経緯	実務洪水予 剤に 適 用 型 ポ で ル の 開 発	山地流域を対象	分布型流出モ デルの計算 育の軽減(集 中化手法自体 は、一般的な流 量流積関数に 適用可能。	離雪流出を考 慮した実用的 な流出解析モ デルの開発	長期流出を対象としてGISを 活用した物理 的定数分布 型流出モデ ル開発	 元 域に適用 できる実用的 な分布型 で ルの開発 	流出寄与域の 概念に対応し た物理的なモ デル	都示 <u></u> 予測。 過 和 ・ 不 飽 和 。 没 し え 没 の 考 慮 、 熟 、 没 し 。 没 し 、 没 し 、 没 し 、 没 し 、 没 し 、 没 し 、 没 し 、 没 し 、 没 の 、 の と う の 、 の と う の 、 の 、 う の 、 う の 、 う の 、 う の 、 う の 、 う の 、 う の 、 う の 、 う の 、 う の 、 う の う の う の 、 う の 、 う の う の う の 、 う の う の 、 う の う の う の 、 う の う の 、 う の う の う の 、 う の う の 、 う の う の 、 う の う の 、 う の う の う の う の う の 、 う の う の う の う の 、 う の う う の う の う の う の う の う の う の う の う の う の う の う の う の う の う う の う の う う の う の う う う う う う う う う う う う う	都市域を含め た水文現象と 水質・生態系 への影響評価	都市坂の水循 環系予測。 過 和・不飽和浸 透 の考慮	都市域の水循 環系予測。飽 和・不飽和浸 透の考慮	一, 貯水池、河道網などの追跡計算	農地の流出、 土砂生産、栄 養成分移流の 解析	都市域の流出 計算	河川 ・ 河口 等 の 水量 ・ 水質 ・ 土壌 移 流 の 計 算	当・表面・根 層・地下水を 高慮した流出 計算	流域の水文特 性の空間分布 を表現	ノンボイント汚 染源負荷量の 評価	水量および水 質を対象とす る総合的なモ デル	流域水文収支 と河道流出計 算	流出寄与域の 概念に対応し た物理的なモ デル	水文素過程 を物理的な 基礎をもって 解析
特徴	メッシュ毎に 算出した流 の入道とした道への の道道はいか により任まり 地点におけ る 算出する。	満城を正方形み。 シュに区分する。 敵和・不飽和流 れを区分し流出 量を算出する。	高峰本唯業に中 権業に中 生た。 生た。 生た。 などの などの などの などの などの などの などの などの	直接流出、基定に 度なモデルを で表 調で で 道 騎 で 支 。 、 縦 水 追 島 い で 道 騎 し で 満 よ 、 縦 水 追 ら で 、 縦 水 。 し で 、 縦 、 が 、 御 、 長 、 、 、 新 、 御 、 で デ 、 、 縦 水 。 道 駒 で 一 、 御 で 、 道 い で 一 、 御 で 一 、 御 で 、 道 い う こ 、 で 一 、 御 で こ 、 一 、 御 で 一 、 御 で こ で 、 道 い し 、 む で 、 二 、 一 、 し 、 、 、 、 、 、 、 、 、 、 、 、 、	ほぼ同質の小 流域HRUに 区分する。各 HRUの木文 成分の合成から全流域の水 文量を算出す る。	流域メッシュに 分割し、メッ シュ動は鉛直方 デルで デルで 表わ す。	流出客与域は たまのたま面流して たるで、客与域は こ、客与域は こ、客与域は たい 決 地 定 する。 と	メッシュ毎任値を 実物理任値を 実物理子る。表 「川」、帯水 層の3部から構 層の3部から構 配の表 次も定 た した の 来 の た に 川」、 来 水	表層を加えた。 表層では 復帰一 一 線形 作 力 線形 に な で る 電 七 は 線形 た いた 高 に 性 は 線形 た いた こ 線 形 に む 家 た 彩 た 、 、 物 た ろ 、 、 物 た う に 、 物 た う に 、 、 物 た う に 参 た 、 の た 内 た の た で し 物 た の た の た で し 物 た の た の た で た の た で た の た で た の た で た の た で た の た で た の た で た の た で た の た で た の た で た の た で た の た で た の た で た の た で た の た で た う た で た う た で た う た で た う た で た う た で た う う う う う う う う う う う う う	スッシュ毎に 塩、 塩、 豊、 電、 帯 、 帯 、 帯 ボ 構 丸 足 配 定 む こ、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 、 、 帯 、 、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 ボ 、 帯 、 、 帯 、 帯 、 帯 、 帯 、 帯 、 帯 、 、 帯 、 帯 、 帯 、 帯 、 帯 、 帯 、 、 帯 、 、 帯 、 、 帯 、 、 帯 、 、 帯 、 、 帯 、 、 帯 、 、 帯 、 、 帯 、 、 帯 、 、 帯 、 、 帯 、 、 や こ を む こ を む こ で む こ で む こ で む こ で む こ で む こ で む こ で む こ で む こ で む こ で む こ で む こ で 、 帯 、 、 ー 、 、 ー 、 ー 、 ー 、 、 ー 、 、 ー 、 、 ー 、 、 ー 、 、 ー 、 、 、 、 、 、 、 、 、 、 、 、 、	水 (文学的に効果) 一に設定し、 建築市 水振物性 た 振行 構成 た 制算 を 着 ポ た 、 動算 を し 、 表 施 す る。 常 が 、 た 制算 を 施 す る。 参 満 、 、 ま の し 、 表 の 、 、 、 、 、 、 、 、 、 、 、 、 、	各省流域に分 調、降水から 損、除水から 損失を引いてし、 出口までの 追跡計算をす る。	流域をメッシュ	イベントモデル である。ただ し、小流域区 分は10区分ま である。	小流域に区分 して流出を計 算する。1次元 モデルである。	雪 表面-根 局・地下水の4 つの貯水タン クから構成され る。	分布型モデルの の代表である。 ご 減 を メッシュユ で 表現	流城を均質として 伝家に、日と短い 時間隔のど ちちでも 解析 日に、 根層で も 局で し 最大 8層であ る。 、 で あ 、 で あ 、 し 、 し 、 し 、 し 、 し 、 し 、 し 、 し 、 し 、 し 、 し 、 し 、 し 、 し 、 、 、 、 、 、 、 、 、 、 、 、 、	モデルの構造 はモジュール 型である。	鉛直2層に一 定貯水能力を 与え、上層の 河道流送と下層 基底流を合わ せ貯水槽に通 す。	流田舎与城に 高与城市 たちに支面流と。 高とて 流出する。 お与城は2平均 防たより たより たった。 たまして 流した。 たまして でした。 たまの たました。 たました。 たました。 たまの たました。 たまの たまの たまの たまの たまの たまの たまの たまの	各 応ノル 化 を 、 の や ん し 、 統 合 を 有 ル ん の あ ん 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、
隆雨遮断	-	_			•	-	•	•	-	-	•		_	-	-	_	•	-	-	•	•	•
蒸発散	_	_	-	Δ	Penman- Monteith	Δ	•	•	● 熱収支法	•	Hamon	-	-	-	•	•	Penman- Monteith	•	•	•	•	Penman- Monteith
窪地貯留	-	-	-		-		•	•	-		•		_	-	_	_		-	•	-	•	-
地表面流		1次元KW		1次元KW		マニング則	遅延モデル	•	1次元KW	1次元KW	-	1次元KW	経験式	貯留関数	単位図法	非線形貯留	2次元	1次元KW	ARMモデル	貯留関数	遅延モデル	2次元
モ デ 降下浸透 ル	● 貯留関数(上 段タンク)	-	● 貯留関数	8-5 67188 ###	● 貯留関数	● 貯留関数	● 貯留関数	1次元不飽和 浸透流	● 線形貯留	1次元不飽和 浸透流	● 不飽和浸透流	-	-	-	● 貯留関数	● 貯留関数	1次元不飽和 浸透流	● 貯留関数	•	8-5 G7 88 #4-	● 貯留関数	● 1次元不飽和 浸透流
素側方浸透		貯留関数(飽和・不 飽和流れ)		川田内坂			-	1次元不飽和 浸透流	線形貯留	1次元不飽和 浸透流	不飽和浸透流	-	-	-	● 貯留関数	● 貯留関数	-	-	•	月田 四 秋	-	-
地下水	下段タンク(不 圧と被圧)	-	-	△ 流末で考慮	● 線形貯留	貯留関数	•	2次元	線形貯留	2次元	地下水タンク	-	-	-	貯留関数	貯留関数	● 3次元	地下水へ涵養の み	•	● 貯留関数	•	2次元
河道流	1次元KW	1次元KW	1次元KW	1次元KW	-	マニング則	マスキンガム	1次元	1次元KW	1次元	-	単位図法、KW	経験式	貯留関数	1次元	1次元	1次元	-	1次元KW	4段貯留	マスキンガム	1次元
水質	-	-	-	-	-	-	-	-	•	-	-	-	•	-	•	•	•	•	•	-	-	-
^{イリスロエ} (パッケージソフト化) 必要か		Δ		×			×		×	×	0	0	0	0	0	0	0		0	Δ	×	0
計算機能力	小	中	小	小	小	小	小	大	中	大	小	小	小	小	小	小	大	小	小	小	小	大
対象流域特性 適用事例	全般 富士川流域	自然流域 淀川、上椎葉ダム (九州)等	全般 大戸川、桂川等	全般 魚野川	全般 タイ国	全般 祖父ヶ峰流域、 草木ダム流域	全般 メコン川等 富士川	全般 海老川	全般 長良川	全般 新河岸川、海老 川、坂川、箱根 山地達城	全般 海老川、神田 川、不老川	全般 各地でよく使わ れている	農地 米国・他で応用	全般 オーストラリア・ 他で応用	全般 利根川	全般	全般 八王子、海老川 支川前原川	自然流域 米国・欧州で応 用	全般 米国・他で応用	全般	全般 神戸市山田川	<u>全</u> 般 各地で事例多 し
備考					米国地質調査 局のPRMSモデ ルを改良したモ デルである	-				1944 A 122 (178) A 294		洪水再現、都市 水文解析、洪水 防御計算	土地利用・施策 等の変化による 水質への影響を 解析					施策によるノン ポイント汚染源 負荷量の変化解 析	2			

表 3-2-3 既存の流出計算モデル

3-2-4 流出予測モデルの構築

(1)流域メッシュデータの作成

対象流域である筑後川・玖珠川流域の地形特性を考慮し、洪水流出モデルを作成 するためのメッシュ分割を行った。メッシュ幅は、流域面積が1120.8km2と大きい ことから、約250m メッシュとした。なお、メッシュ数は16,751 個である。

標高データは、数値地図 50m メッシュ(標高)(国土地理院)より算定した。標 高は約 90m から 1740m ほどに分布している。

土地利用データは、約 100m メッシュごとの点の地目が数値データ化されている 国土数値情報 KS-202(H9年 1/10 細分メッシュ土地利用)をもとに作成した。 土地利用は、①水田、②樹林、③宅地、④その他(丘陵、畑、ゴルフ場、公園)、⑤河 川・ダムの5分類で整理した。

(2)擬河道網の作成

擬河道網は、直接・中間流による流出現象を斜面流で追跡する(kinematic Wave 法)際に必要となる河道データである。擬河道網は250m メッシュの標高を用いて、 陸らのグリッド型モデルを採用し作成した。

図 3-2-2 250m メッシュ標高データより作成した対象流域の擬河道網

(3)流出予測モデルの構築

1)解析手法

降雨-流出モデルの概要図を図 3-2-3 に、分布型流出モデルのモデルフローチ ャートを図 3-2-4 に示す。図 3-2-4 のモデル構成より、直後、中間流による流出現 象を斜面流の追跡法である Kinematic Wave 法で行い、基底流出量は貯留関数法 で追跡し、流出口で合算する。

図 3-2-3 洪水の流量曲線の構成概念図

図 3-2-4 モデルフローチャート

2) 降雨モデル

本モデルでは、得られた降雨データを直接流出に関与する降雨と間接流出(基 底流出)に関与する降雨に分離する。本検討では新安江モデル(2成分モデル)を 適用し降雨を2成分に分離する。 新安江モデルは超蓄流出理論に基づき、図 3-2-5 の中の流域内各地点での貯水 能力に次式のような分布を導入している。

$$\frac{f}{F} = 1 - (1 - imp) \left(1 - \frac{WPM}{WMM} \right)^2$$
ここで、*imp* は不浸透域の面積率、*WMM* は流域内の最大貯水能力、 $\frac{f}{F}$ は貯水

能力が WPM 以下の点の面積率である。これを積分することにより、流域平均貯水能力: WM が得られる。

$$WM = \frac{WMM(1-imp)}{1+b}$$
(3.2)

流域貯水量がWの場合、図3-2-6に示すように、

$$a = WMM \left(1 - \left(1 - \frac{W}{WMM} \right)^{\frac{1}{1+b}} \right)$$
(3.3)

以下の部分が満たされていることになる。このときに雨量 P の雨が降った場合 に、流出量が

$$R = \int_{a}^{a+P} \left(\frac{f}{F}\right) dP$$
 (3.4)

となる。この式を積分すると、

$$R = P - WM + W + WM \left(1 - \min\left(1, \frac{P+a}{WMM}\right)\right)^{1+b}$$
(3.5)

が得られる。

3) 集中型モデル

①基本式と特徴

貯留関数の基本方程式は流域、河道ともに、(3.6)式の連続式および(3.7)式の運動式で表される。

 $I - Q^{\lambda} = \frac{ds\lambda}{dt}$ (3.6) $S\lambda = KQ_{\lambda}^{P}$ (3.7)

ここに、*I* 流入量流域の場合、*F* を流入係数、*r*_{ave} を流域平均時間雨量、*A* を流 域面積とすると、

 $I = \frac{1}{3.6} \cdot F \cdot r_{ave} \cdot A$

河道の場合、Fjを流入係数、Ijを流入量群とすると、

$$I = \sum_{j=1}^{n} \cdot Fj \cdot Ij$$

 $Q\lambda(t) = Q(t+T\lambda):$ 遅滞時間を考慮した流域河道の流出量

*T*λ : 遅滞時間

上式で明らかなように河道貯留量Sと流出量Qの関係が(3.7)式で定まれば、流入量Iを与えることにより貯留量Sを媒介関数として流入量Qを逐次求めてゆくことができる。

流域における貯留関数法の計算の要点と特徴を整理すると、次の3点があがる。

- 流出の成分は洪水流出と基底流出の2成分からなり基底流出(基底流量)
 は、洪水初期の流量に等しく洪水期間中一定とする。
- ② 洪水流出は、マニングの抵抗則に従う表面流とし、これから貯留と流出の 関係を単純な指数関数にあるとし、非定常性を表すパラメータとして遅滞時 間 T₁の概念が導入されている。
- ③ 流域における降雨の流出は、流出域と浸透域が洪水期間中独立に存在し、 累加雨量が飽和雨量(Rsa)に達するまでの降雨初期においては、一次流出 率をfとすれば(f・A)となる流出域から流出するものと考え飽和雨量を越 えてからは残りの浸透域から Rsa 以降の降雨によってさらに流出が加えら れるとする。

流出域からの単位流出高を q_1 、浸透域からの単位流出高を q_2 、基底流出量を Q_s 、 全流出量をQとすれば、次式の関係がある。

$$Q = \frac{1}{3.6} \cdot f \cdot A \cdot q_1 + \frac{1}{3.6} (1 - f) \cdot A \cdot q_2 + Q_s$$
 (3.8)

4)河道流量計算プログラムの作成

ここでは、河道追跡モデルである Kinematic Wave 法を説明する。

抵抗則に Manning 則を用いることによって次式が成り立つ。

$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$	(3.9)
$V = \frac{h^{2/3} I^{1/2}}{n} - \dots$	(3.10)
Q = BhV	(3.11)
ここに、B、h、A:河道幅、水深、通水面積	
n : 粗度係数	
<i>I</i> : 流路勾配	
V、 Q : 流速、流量	
上式を特性曲線で解くときの曲線式を次式に示す。	
$\frac{dx}{dt} = \frac{5i^{3/10}Q^{2/5}}{3 \cdot n^{6/10} \cdot B^{2/5}}$	(3.12)
特性曲線を Kinematic Wave 法に適用する。次式に示すように	変換される。
流域斜面: $h = kq^p$	(3.13)
$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = \alpha \gamma_e(t) _$	
河道 : $A = KQ^P$	(3.14)
$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q$	

上式を河道について計算するとA=KQをtで偏分すると次式が得られる。

$$\frac{\partial A}{\partial t} = \frac{\partial}{\partial t} \left(KQ^{P} \right) = KpQ^{P-1} \frac{\partial Q}{\partial t}$$
$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q \rightarrow KpQ^{P-1} \frac{\partial Q}{\partial t} + \frac{\partial Q}{\partial x}$$
(3.15)

特性曲線理論の特性方程式は次式となる。

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dZ}{P^P + q^Q} = d\sigma$$
(3.16)

これより、次式が導き出される。

 $qdt = KpQ^{P-1}dQ$ qdx = dq $const とすれば最終的に次式が得られる。
<math display="block">qt = KQ^{P} + C$ $q(t_{2} - t_{1}) = KQ^{P}(t_{2}) - KQ^{P}(t_{1}) - (3.18)$ $q[x(t_{2}) - x(t_{1})] = Q(t_{2}) - Q(t_{1})$

上式より、時刻 t_1 での流量 $Q(t_1)$ と横流入量 q と特性曲線の位置 $x(t_1)$ が求まれば、時刻 t_2 での流量 $Q(t_2)$ と特性曲線の位置 (t_2) が求まる。

3-2-6 予測流量と実測流量の比較

(1)貯留関数予測モデルの概要

筑後川(直轄管理区間)の洪水予測では、貯留関数法を基本に、河川整備基本方針の流 域・河道分割を洪水予測用に改造したモデルが用いられている。

洪水予測モデルの流域・河道分割は予測地点(水位・流量観測地点)、ダム地点等で 24 流域、14 河道に分割している。洪水予測では毎時得られる実測値でモデルパラメ ータ等を修正(フィードバック)して予測精度を向上している。フィードバック処理 を効率的・合理的に行い、安定した予測値が得られるよう、実測値に対して1流域を 対応させることを基本としている_(注)。

対象とする小渕上流域は、6流域、3河道に分割されている。

(注)一つの実測流量に対して1流域が対応することを基本としているが、小ヶ瀬では上流にリアルタイムで 取得できる流量がなく、また、流域が大きいことから、2流域を対応させている。

図 3-2-7 筑後川洪水予測システムの水位予測地点位置図

(1) 貯留関数予測モデルを用いた予測計算

現行の筑後川洪水予測システムにより、気象庁降水短時間予測雨量を用いた時の水位予測シミュレーション結果は、図 3-2-8~3-2-10 のとおりである。

ここで、水位予測地点は、以下の3地点である。

- 小平(筑後川本川、玖珠川合流前)
- ・小ヶ瀬(玖珠川)
- 小渕(筑後川本川、玖珠川合流後)

既往の予測雨量については、平成 11 年が 3 時間先、平成 13、15 年が 6 時間先まで データが存在する。そこで、平成 11 年洪水は 3 時間先、平成 13、15 年洪水は 6 時間 先までの予測シミュレーションを行った。

小平では、1、2時間先の水位は概ね捉えられているが、予測時間が長くなるほど実 績との差が大きくなっている。

小ヶ瀬は小平よりも予測精度は良好であるが、洪水の立ち上がりからピークにかけ ての長時間予測精度が低い。

小渕は上記 2 地点よりも予測と実測の整合が良い。ただし、H15.7 洪水では上記と 同様にピーク付近の予測精度が低い。

(2)分布型モデルを用いた予測計算

分布型モデルにより、レーダ雨量を用いた時の水位予測シミュレーション結果は、図 3-2-11~3-2-13のとおりである。

水位予測地点及び予測時間は貯留関数予測モデルとである。

いずれの地点も洪水の立ち上がりからピークにかけての予測の実績との整合が貯留 関数モデルよりも向上している。

貯留関数モデルは毎時データにより流出率を変化させているため、異なる時刻間で の計算値に連続性はない。このため、実績にほぼ一致する予測と波形が異なる予測が 相前後して生じている。

これに対し、分布型モデルでは計算と実績の差の傾向を予測に反映させるフィード バックを採用していることから、計算値そのものは一連洪水期間で連続しており、計 算と実績の差の傾向がそれ以前と異なる時刻において、実績と整合しない予測値が得 られている。

上記のように、分布型モデルによる洪水予測は一般に多く用いられている貯留関数 モデルに比べ良好な結果となった。前章で述べたように、分布型モデルはパラメータ や降雨量の設定にリモートセンシングデータを有効に活用できることから、任意地点 の流量を把握できるというモデルの特徴を活かした水系全体の高水管理等に有用であ ると考えられる。

図 3-2-8 貯留関数モデルによる洪水予測計算結果(小平:レーダ雨量)

図 3-2-9 貯留関数モデルによる洪水予測計算結果(小ヶ瀬:レーダ雨量)

図 3-2-10 貯留関数モデルによる洪水予測計算結果(小渕:レーダ雨量)

図 3-2-11 分布型モデルによる洪水予測計算結果(小平:レーダ雨量)

図 3-2-12 分布型モデルによる洪水予測計算結果(小ヶ瀬:レーダ雨量)

図 3-2-13 分布型モデルによる洪水予測計算結果(小渕:レーダ雨量)

3-2-7 分布型流出モデルの活用例

(1) 事前放流

時間と共に更新される降雨予測情報を活用して、事前放流の実施・中断の判断として活用す ることが可能となる。

長時間の降雨予測を活用し、事前放流の実施を決定した後も、常に、更新され続ける最新の 長時間及び短時間の降雨予測情報により、事前放流量の調整や終了の判断が可能となる。

図 3-2-14 分布型流出モデルの活用例(事前放流)

(2) ただし書き操作

従来型の流入量予測モデルでは、ただし書き操作(計画規模を超える洪水時に放流量を増や す操作)が必要であると判断されるようなケースでも、降雨予測情報を活用した分布型流出モ デルにより、流入量が速やかに減少すると予測されたケースでは、ただし書き操作の必要性は ないと判断することが可能になり、通常のダム操作により洪水調節の実施が可能となる。

また、分布型流出モデルによりただし書き操作が必要であると判断された場合にも、早期の 情報提供が可能となる。

図 3-2-15 分布型流出モデルの活用例(ただし書き操作)

第2章3の参考文献

スーパーコンピュータの更新及び数値予報等の改善について、気象庁報道発表資料、平成18年2月23日 http://www.jma.go.jp/jma/press/0602/23a/suchiyohokaizen.html

川崎将生、多田智和、地球規模水循環変動に対応する水管理技術に関する研究、建設マネジメント技術 2006.8、(財) 経済調査会