人工衛星利用技術を活用した流域水文情報収集技術に関する研究

(独立行政法人土木研究所 水工研究グループ 水理水文チーム)

1. はじめに

流域や河川区域等の広域にわたる面的・線的情報を収集する上で、リモートセンシングは有効と期待され、従 来から利用されている航空写真に加え、最近では航空機/ヘリコプタ搭載レーザープロファイラ、光学センサやカ イト気球からの低高度空中写真撮影等の新しい試みも行われつつある¹⁾。しかしながら、河川管理や水資源管理 の現場における実利用を目指したリモートセンシングの総合的な研究や評価はこれまであまり行われていない。

本研究は、流域水文情報および河川管理情報の効率的な収集技術の開発を目的として、人工衛星や航空機・ヘ リコプタをプラットフォームとしたリモートセンシングで得られる情報の有効性を明らかにし、河川・水資源管 理分野における利活用手法の検討を行ったものである。

2.研究方法

2.1 河川調査・管理を支援する情報取得検討

2.1.1 高分解能衛星画像の活用

主に 1999 年 9 月に打ち上げられた高分解能衛星 IKONOS 画像(地上分解能:パンクロマティック画像 1m、マルチスペクトラル画像 4m)を用いて河川構造物等の把握や経年的な河道内の変化状況モニタリングへの適用について検討を行った。使用データと対象地域は以下のとおりである。

(1) 河川構造物等の把握

使用データ: IKONOS マルチスペクトラルパンシャープン画像(2000/8/11 撮影: 解像度 1m)および航空写真シミュレーション画像(解 像度 0.25、0.5m 調整)。

対象地域:荒川下流部(千住大橋付近)

(2) 河道内変化状況のモニタリング

使用データ:IKONOS マルチスペクトラル画像(2000/8/11 撮影)および航空写真(1998/10/4 撮影)。 対象地域:荒川中流部(埼玉県熊谷市付近)

- 2.1.2 航空機 / ヘリコプタ搭載デジタルセンサの活用
- (1) レーザープロファイラを用いた河川区域内高さ情報取得

河川区域内で最も重要な情報である高さ情報を詳細に得ることを目的として航空機搭載レーザープロファイラ (Optech 社製 ALTM1020)を用いて標高計測および評価を行った。計測日は 2000 年 2 月 16 日、計測値の検証と して、GPS を用いた河川横断測量を行った。

(2) スリーラインセンサを用いた河道内情報取得

近年開発されたヘリコプタ搭載スリーラインセンサ²⁾(以下、TLSと呼ぶ)を用いて河道内情報取得の可能性を検討した。対 象地域は埼玉県寄居町の荒川(寄居公園~八高線鉄橋までの 1.0km 区間)とした。2002年1月30日~2月1日 にかけて、対地高度300、500、700mから撮影を行った。地上解像度は対地高度300mで3.5cm、撮影幅は360m である。

検討内容は、標高情報の取得、高解像度画像による地物判読、現地表層河床材料調査結果との比較である。

2.2 流域水循環監視・モニタリングへの活用検討

2.2.1 山地土層厚の推定

流域の水循環機構を定量的に解明する上で、重要パラメータのひとつである山地流域における土層厚の推定手 法の検討を行った。これまで山地流域全体の土層厚を推定する手法として相対的土層厚評価表を用いる手法³⁾や 衛星データから算出した植生指標から腐葉土層厚さを推定する手法⁴⁾が紹介されているが、本研究では、これら の推定手法を参考に新たなアルゴリズムを採用し、水文学的基盤までの深さとしての土層深の推定手法の検討を 行った。

使用したデータは、人工衛星画像(LANDSAT-7 ETM 2001/6/4 撮像) 数値地図(50m メッシュ標高) 環境省 自然環境保全基礎調査データ、国有林森林調査簿、群馬県および栃木県の該当区域森林簿等である。研究対象域 は、群馬県と栃木県に跨る草木ダム上流域(254km²)とした。

2.2.2 空間解像度が判別結果に与える影響

空間分解能が異なる3つの衛星画像を用いて、都市域の緑被率、浸透・不浸透域面積を求め、衛星の空間分解 能が判別結果に与える影響について検討を行った。

検証データとして、航空写真判読を基に作成した緑被率、浸透・不浸透域面積を使用した。

使用した衛星画像は、撮影日の近いLANDSAT TM (2000.8.3 撮影:解像度 30m)、SPOT HRV (2000.7.31 撮影: 解像度 20m)、IKONOS (2000.8.11 撮影:解像度 4m)であり、検証用の航空写真は、1m 解像度のオルソフォト 画像を作成した。

3.研究結果

3.1 河川調査・管理を支援する情報取得検討結果

3.1.1 高解像度衛星画像の活用結果

(1) 河川構造物等の把握

IKONOS 画像(1m 解像度)と航空写真シミュレ-ション画像(解 像度 0.25m)の比較例を図-1 に示す。両画像ともにワンド や堤外地内の管理用道路等が確認可能であった。IKONOS 画像はエッジ部分が不鮮明である箇所も見られるが、画像 強調等の処理を行うことにより判読精度の向上が可能で ある。表-1には、IKONOS 画像と航空写真シミュレ-ション画像 の判読結果を表-1 に整理した。IKONOS 画像の判読結果 は、「判読可能」あるいは「概ね可能」の項目が多く、河 川調査・管理への実利用の可能性は高いと判断できる。 ただし、航空写真シミュレ-ション画像と比較すると細部のテク スチャを見分けることに難がある項目も見られ、利用目 的を明確にした上で衛星画像を使用する必要があると思 われる。

(2) 河道内変化状況のモニタリング結果

2 時期の高解像度衛星画像を用いて河道内の経年変化 状況の把握を行った。比較対照年は 1998 年、2000 年と した。1998 年撮影画像は、高解像度衛星画像の擬似デー タとして航空写真オルソフォト画像を用いた。

図-2 に河道内の経年変化状況(1998~2000年)を、表 -2 に同 2 時期の土地被覆状況の面積変化を示す。本対象 区域において 1998 年から 2000 年の間に植生域面積が 0.27km²から 0.89km²に増加し、裸地等の面積が 1.54km² から 0.99km²に減少し、河道内の樹林化が進行している ことや局所的な澪筋の位置移動が確認できる。

現在のところ、高解像度衛星画像の蓄積状況は十分と はいえないが、本研究で行った過去の航空写真との比較、

図-1 IKONOS 画像(左)と航空写真シミュレーショ ン画像(右)の比較例 C 日本スペースイメージンンヴ

表-1 河川区域内情報の判別可能性の比較

和同年1月 日	IKONOS画像	航空写真シミュレーション画像	
判配項目	(マルチスペクトル1m)	0.5m	0.25m
早瀬(航跡)	白波から判別	可能	可能
ワンド	概ねの輪郭は判別可能	概ね可能	概ね可能
浅瀬	画像強調により可能性有り	可能	可能
自然護岸	概ね判別可能	可能	可能
人工護岸	判別可能	可能	可能
流入支川・排水の位置	概ね可能	可能	可能
高木群		概ね可能	概ね可能
低木群	画像強調により被覆物の判	概ね可能	概ね可能
高い草本群	別は可能、高さの判別は困	概ね可能	概ね可能
低い草本群	難	概ね可能	概ね可能
裸地		可能	可能

図-2 2 時期リモートセンシング画像の重ね合せ による河道・河川敷変化の検知(荒川中流部)

あるいは、今後の衛星画像の蓄積により個別河川の特性調査や河川や流域における過去から現在までの土地被覆

表-2 2時期の土地被覆変化面積一覧

1998 年 の	2000 年 の	変化項目別の2000年の		
土地被覆	土地被覆	<u>上地放復回</u> km ²	<u>損こに卒</u> %	
	水域	0.24	51.1	
水域	植生域	0.06	12.8	
	裸地等	0.17	36.2	
	1998年の水域面積	0.47	100.0	
	2000年の水域面積	0.40		
	水域	0.01	3.7	
植生域	植生域	0.23	85.2	
	裸地等	0.03	11.1	
	1998年の植生域面積	0.27	100.0	
	2000年の植生域面積	0.89		
	水域	0.15	9.7	
裸地等	植生域	0.60	39.0	
	裸地等	0.79	51.3	
	1998年の裸地等面積	1.54	100.0	
	1001	+ 88	a second second	
THE WEAT			The second se	
	4 - 44 - 1 - 444 1 (p 17	1444	i i juga	
1			±	
101 3	100 5 8 0 3 8 0 300	01. N BC		

図-3 レ-ザ - プ ロファイラ-による計測データ(補完点) と実測点データとの比較例

図-5 倒伏したパリエンジュ (上)現地踏査時地上から撮影、(下)TLS 画像

の変化状況の把握等について、比較的容易に行うことが可能で あることが明らかとなった。

3.1.2 ヘリコプター搭載デジタルンサの活用結果 (1) レーザープロファイラを用いた河道内高さ情報取得結果

GPS を用いた地上横断測量と比較した結果の一例を図-3 に示 す。その結果、GPS の計測精度の問題はあるが、植生のない箇 所では地上横断測量結果と 10~20cm の差が見られたものの、 比較的精度良くデータが取得可能であった。一方、植生が存在 する箇所では、レーザーが地上に到達可能な場合は、地盤高デ ータを取得できる可能性があるが、植生密度が高い場所ではレ ーザープロファイラによる計測値が、植生の対応する形で地上 横断測量結果より 30~60cm ほど高い値となった。

レーザープロファイラにより得られる標高分布データ は、高解像度衛星や航空写真等と重ねあわせて利用する ことにより、さらに有用な情報として活用できるものと 期待される。

図-4 TLS 画像から作成した 等高線図(50cm 主曲)

(2) スリーラインセンサを用いた河川区域内情報取得結果
 スリーラインセンサの前方、直下、後方の3方向の画像を同時取得で
 きる特徴を用いて3次元計測を行った。

図-4 に得られた標高点データから作成した主曲 50cm の等 高線図を示す。縦横断勾配を概ね表現していると推測された が、現地調査を含めた詳細な精度検証を行う必要がある。

図-5にTLS画像と現地踏査時に撮影した同じ対象物として 倒伏したハリエンジュ群落の状況を示す。TLS画像から直接、 樹種を判別することは困難であったが、倒伏した樹木の本数、 洪水時に引っ掛かったゴミや草は確認可能であった。また、 剥離した護岸ブロックや車のわだちも TLS 画像上で識別可 能であった。これらの結果は、緊急時の河川構造物の被災状 況やゴミや不法係留船の監視といったような主に河川パトロ ールに対応した調査にも利用可能であることを示している。

また、TLS 画像撮影と同時期に現地において表層河床材料調査を行い、TLS 画像判読結果と比較した。 画像判読は、河床状況が異なっていると判断した4地点においてコドラード(3×3m)を設定し、表層河床材 料の粒径計測を行った。計測は、粒径の長い方を長径、短い方を中径とし(粒径の最も短い短径は上空からの画

表-3 TLS 画像判読と現地河床材料調査比較結果

平均粒径	調査地点 NO.1		調査地点 NO.2	
(cm)	TLS 判読	現地調査	TLS 判読	現地調査
長径	26.65	15.58	14.19	5.18
中径	14.82	11.07	9.99	3.80
短径	-	5.70	-	2.13
d60	9.38	7.37	6.66	5.85

像では計測できないと仮定した) 各地点 100 個の粒径計測を行った (図-6)。

図-6 TLS 画像による河床粒径計測 (調査地点 No.1)

代表粒径(d60)は粒径計測を行った各礫を回転楕円体として求めた。表-3に両手法により得られた結果を示す。その結果、調査地点No.1、No.2 でいずれも TLS 画像判読により得られた粒径のほうが現

地調査で計測した結果より大きな値を示した。粒径として 判読可能な大きさは最低 2~3 ピクセルは必要であり、本研 究の場合、約 7cm 以上の河床材料が判読可能であった。た だし、TLS 画像から判読できる幾何学的あるいはテクスチ ャの特徴から数 10cm 単位の粒径区分による分布図の作成 は可能であった(図-7)。

3.2 流域水循環監視・モニタリングへの活用検討結果

3.2.1 山地土層厚の推定

人工衛星画像から算出した植生指標、DEM から算出した 地形形状、森林調査簿等の既存データと現地土層厚との関 係を調べた。その結果、人工衛星画像から算出した NDVI (正規化植生指標)と数値地図から算出した斜面傾斜角 に相関が見られた。さらに、相関関係は単回帰より区分 線形回帰が適していると推測された(斜面傾斜角の場合、 単回帰使用 R=0.58、区分線形回帰 R=0.88)。そこで、NDVI と斜面傾斜角を用いて区分線形回帰分析を行った。その 結果を図-8 に示す。

推定土層厚はNDVIと正相関、斜面傾斜角と負相関が 見られた。また、NDVI、斜面傾斜角を別々に用いるよ りも、両者を組み合わせることにより推定精度が上がる ことも明らかとなった。

ただし、NDVI は衛星画像の撮像時期により値の変動 が大きく、秋季画像(2001/11/18 撮像)から算出した NDVI を用いた場合、現地土層厚との相関は見られなかった。

図-8 に示す区分線形回帰式の区分を本研究の利用デー タを用いて統計解析した結果、国有林森林調査簿、県管 理森林簿に記載されている林種に有意差(P<0.05)が見ら れた。具体的には、未立木、ビ/F林とスギ、カラマツ林で区分 されたが、ヌ゙ナ5広葉樹林はどちらの区分ともいえない結

図-7 河床材料粒径分布評価図

図-8 現地土層厚とNDVI、平均傾斜角の関係

推定土層厚分布図(草木ダム流域)

図-9 推定土層厚分布図

することは困難であることから、と
井林は
ジ
たう他
広葉樹林 とともにスギ、カラマツ林の区分として扱った。そして、人工衛 星画像を用いて土地被覆分類を行い、分類結果に区分線形 回帰式を適用し、草木ダム上流域全体の土層厚分布図の作 成を行った(図-9)。その結果によると、足尾銅山跡地や その周辺の土層厚を浅く、尾根部の広葉樹二次林(主に夘 -ミズナラ群落)で土層厚を深く表現しており、概ね現地土層 厚分布を再現していると考えられる。

3.2.2 空間解像度が判別結果に与える影響結果

空間解像度が情報抽出に与える影響を把握する為、 LANDSAT TM (解像度 30m), SPOT HRV (解像度 20m), IKONOS (解像度 4m)を用いて緑被率および浸透域/不浸 透域の面積割合を比較検討した。緑被率は、衛星画像別に NDVI を算出し、NDVI のヒストグラムを基に閾値を設定 することにより、緑地/非緑地の分類を行い、算出した。図

-10 に各衛星画像から作成した緑地/非緑地の分布状況得を示す。また、表-4 に緑地/非緑地の分類結果を示す。 その結果、航空写真判読と比較し、LANDSAT画像を用いた場合でもその差は 6.3%と小さく、IKONOS 画像で は0.4%とほとんど変わらない結果が得られた。本研究において検証用に使用した航空写真は、衛星画像取得時期

LANDSAT TM 閾値 緑 地:166 以上 非緑地:165 以下
SPOT 閾値 緑 地:151以上 非緑地:150以下
IKONOS 閾値 緑 地:171以上 非緑地:170以下

と2ヶ月程度のずれがあること、航空写真判読の最小単 位を 10m 四方としたことなど、航空写真撮影時の状況を 再現しているとはいえないことを留意する必要がある。 しかし、IKONOS 画像を用いた場合、LANDSAT や SPOT のような中程度の解像度で把握することが困難であった 小規模の緑地も抽出されていることから、緑地が点在す る都市域における緑被率算出に高解像度衛星画像が有用 であると考えられる。

浸透域/不浸透域の分類は、土地被覆分類(最尤法)を 行い、これを統合することで行った。浸透域として樹林 地、草地、水田、裸地・畑地、水域を、不浸透域として

表-4 異なる衛星画像による緑被率の比較

		全域		中心部		写真判読結果
		(5.1km四方)		(2.3km四方)		との差
		ピクセル数	%	ピクセル数	%	%
IKONOS	緑地	667153	41.0	51636	15.6	0.4
	非緑地	942464	58.0	269133	81.1	0.1
	(雲域)	16008	1.0	10977	3.3	
	計	1625625		331746		
SPOT	緑地	26061	40.1	1389	10.3	5.7
	非緑地	38316	58.9	11610	86.3	5.3
	(雲域)	648	1.0	457	3.4	
	計	65025		13456		
LANDSAT	緑地	11484	39.5	593	9.7	6.3
	非緑地	17312	59.5	5294	87.0	6.0
	(雲域)	284	1.0	197	3.2	
	計	29080		6084		

図-10 緑地/非緑地分布図(白が緑地部分)

図-11 浸透域/不浸透域分布図

(青が浸透域)

全域

(5.1km四方

ピクセル数

820970 50.5

788647

16008

29695 45.7

34682 53.3

65025

14745 51.0

13871 48.0

28900

284 1.0

648 1.0

1625625

表-5 各種衛星センサによる浸透域/不浸透域 評価結果と航空写真判読結果との比較

中心部

%

48.5

1.0

2.3km四方)

ピクセル数

74091

246708

10977

331776

2186

10813

457 3.4

940 15.5

4947 81.3

197 3.2

6084

13456

写直判読結果

%

34

3.4

9.5

9.4

10.2

10.3

との差

%

22.3

74.4

3.3

16.2

80.4

LANDSAT

市街地を設定した。図-11 に分類結果を示す。また表-5 に浸 透域/不浸透域の分類割合を示す。

航空写真の判読結果浸透域率と比較すると、LANDSAT、SPOT、 IKONOS で 10.2、9.5、3.4%の差が見られた。IKONOS の場合、 より小さな緑地を抽出できた結果と推測されるが、いずれの 衛星データを用いた場合も明らかに異なる土地被覆項目に誤 分類されている箇所が見られた。色調の似通っている裸地と 市街地の誤分類が原因と予想された。

4.まとめ

SPOT

本研究では、流域水文情報および河川管理情報の効率的な 収集技術の開発を目的として、人工衛星利用技術の有効活用 に関する研究を行った。その結果を以下にまとめる。

- 人工衛星利用技術は、現地調査や航空写真撮影・判 1) 読等の既存ツールに取って代わるものではなく、様々なプラット フォームや地上調査を組み合わせて活用することによりその有 効性が増大する。
- 2) 衛星画像等から有用な指標を算出することにより、流域 スケールでの広域的な面的情報を効率的に取得すること が可能となる。

今後は河川/流域管理の現場で応用実績を積み重ね、現場で 要求される情報の精度や項目を詳細に網羅した具体的な衛星 画像の利用方法や利用に関する指針の確立が必要であると考 えられる。

参考文献

- 1) 大野博之、萱場裕一、林貴宏、傳田正利、浅見和弘、島谷 幸宏:低高度空中写真による河川環境調査法、河川技術に 関する論文集、第5巻、1999年6月
- 2) 船瀬優:スリーライン(TLS)画像、写真とリモートセン シング、Vol.40、No.2、pp.2-3、2001
- 3) 廣瀬葉子、深見和彦、金木誠:衛星データと地理情報を併 用した土壌厚さ推定の試み、土木学会第55回年次学術講 演会講演概要集(CD-ROM)第 部門 -100、2000
- 4) 岩川昌広、山本義幸、藤井寿生、西川肇: 衛星データを利 用した林地保水機能の定量化に関する研究、土木学会第56 回年次学術講演概要集(CD-ROM), DISC 第 部門 -201、

2001

LANDSAT 浸透域

IKONOS

SPOT

浸透域

(雲域)

浸透域

(雲域)

不浸透域

不浸透域

(雲域)

不浸透域

- 5) 深見和彦:河川管理への衛星データ応用研究事例-土木研究所における取り組み-、JACIC 情報、58 号、pp.60-63、2000
- 6) 廣瀬葉子: 超高分解能衛星を用いた河川管理情報取得技術、土木技術資料第42巻9号、p15、2000.9

写真判読結果

浸透域:25.7%

(雲域:3.3%)

不浸透域:71.0%

中心部2.3km四方

- 7) 廣瀬葉子、深見和彦、金木誠 : リモートセンシンヴを活用した河川流域情報収集、土木技術資料第43巻1号、pp.14-19、2001.1
- 8) 廣瀬葉子、深見和彦、金木誠 : 高解像度衛星画像を用いた簡易な河川モニタリング手法の検討、土木学会第56回年次学 術講演会概要集(CD-ROM) DISC1 第 部門 -232、2001
- 9) 深見和彦:水情報におけるリモートセンシングの活用、河川、vol.58, No.1、pp.93-98、2002