

河川研究部 大規模河川構造物研究室 (博士(工学)) 小堀 俊秀 <sup>研究官</sup> 石川 亮太郎 <sup>研究官</sup> 武川 晋也

(キーワード) ダム、維持管理、点検、非破壊試験

## 1. はじめに

ダムが長期にわたりその機能を確実に果たしてい くには、その状態を良好に保つための各種点検等が 極めて重要となる。このため、巡視と計測による日 常点検、地震時等の臨時点検、第3者による定期検査 からなる安全管理のための点検等のほか、最近では 長寿命化を目的として、より詳細な状態把握を行っ て健全度評価や今後の維持管理方針作成を行う「ダ ム総合点検」も行われるようになっている。

このような詳細点検では、ダムの状態調査や長期 挙動の分析をできるだけ客観的に行える診断技術の 開発・普及が欠かせない。国総研でこれまで取組ん できた衛星SARを活用した変位モニタリング技術の 開発や振動モニタリングの活用に向けた研究もこの 一環であり、現場では各種測定機器にドローンや水 中ロボット技術を組合せた効率的な状態把握の試み も近年急速に進みつつある。しかしながら、ダムの 内部状態を効率的な把握に有効な技術は十分でない。 現状では調査ボーリング等による確認が行われるこ ともあるが、堤体内部での変状範囲の把握や高所作 業の困難さ、調査費用の面等で課題が多い。そこで 本稿では、特にダムの内部状態の把握を目的とした 非破壊調査手法に関する研究について紹介する。

## 2. ダム堤体の非破壊検査技術の開発

コンクリートダム堤体表面にひび割れ等の変状が 認められた場合、その堤体安定性への影響の評価が 必要となる。このような場合、実施箇所が限られる ボーリング調査を補完し、堤体内部での分布等を把 握できる有効な非破壊手法の確立が望まれる。

現在、コンクリート構造物内部のひび割れ探知に

実績のある非破壊手法は限られているが、その一つ に高周波衝撃弾性波法がある。これは構造物表面を ハンマー打撃して弾性波を発生させ、内部の不連続 面等からの反射波や伝搬速度を計測して位置を特定 する技術で、コンクリート杭等で実績があるほか、 一部コンクリートダム堤体安定上重要な水平打継面 の状態把握への適用も試みられている。そこで、本 手法のダムへの適用性を把握するため、分離面を有 する大型コンクリート供試体及び実際のダム堤体を 対象に、その位置の特定や状態評価がどの程度可能 か計測試験を実施した。その結果、供試体では既知 の分離面の有無と反射波の有無が対応する結果が得 られ、現地試験においても、ボーリングによるひび 割れ位置と概ね対応する計測結果が得られることが わかった(図-1)。ただし、供試体での分離面状態 (接触面積比) と反射波振幅の関係のばらつきが見 られ、現地試験で一部ひび割れ位置以外からの反射 波も検出された。このような結果をもとに、今後本 技術の活用法や留意点をまとめる予定である。

<sup>室長</sup> (博士(工学)) **金銅**  将史



なお、国内外とも実績に乏しいこのようなマスコ ンクリート内部の変状検出に有効な非破壊技術につ

## 研究動向 · 成果

いて、一層の開発を進めるため、国総研ではより専 門的で高度な知見を有する大学等との連携(国交省 による河川砂防技術研究開発制度を活用した委託研 究)による技術開発も同時に進めている(表-1)。

| 表−1 研究開発内容と研究機関 |                                                                                                                                         |                                                                                |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 研究              | 研究開発内容                                                                                                                                  | 研究機関                                                                           |
| 1               | 低周波の弾性波を用いたコンクリートダ                                                                                                                      | 首都大学                                                                           |
|                 | ムの亀裂検知および強度分布把握手法                                                                                                                       | 東京ほか                                                                           |
| 2               | 超広帯域SAセンサによるコンクリートダ                                                                                                                     | 京都大学                                                                           |
|                 | ム堤体内部のひび割れ進展・評価                                                                                                                         | ほか                                                                             |
| 3               | リモートモニタリングシステム赤外線・<br>弾性波を活用したコンクリートダム堤体<br>のひび割れ・打継ぎ面の非破壊による可<br>視化評価技術                                                                | 富山県立<br>大学ほか                                                                   |
| 2               | ムの亀裂検知および強度分布把握手法<br>超広帯域SAセンサによるコンクリートダ<br>ム堤体内部のひび割れ進展・評価<br>リモートモニタリングシステム赤外線・<br>弾性波を活用したコンクリートダム堤体<br>のひび割れ・打継ぎ面の非破壊による可<br>視化評価技術 | <ul> <li>東京ほか</li> <li>京都大学</li> <li>ほか</li> <li>富山県立</li> <li>大学ほか</li> </ul> |

このうち研究①(表-1)では、大規模構造物であ るダムでも透過力が期待出来る低周波弾性波を利用 することで、到達時間の遅延や減衰などから堤体内 のひび割れ検出が可能か検討を進めている(図-2)。



研究②(表-1)では、幅広い周波数帯での弾性波 観測が可能なセンサや弾性波トモグラフィ技術(図 -3)を用いてひび割れ等の内部変状の検出技術の開 発を進めており、堤体内での微小な弾性波であるAE (Acoustic Emission)も活用した状態監視法の開発 を目指している。



(ボーリング調査結果と出力結果の比較)

研究③(表-1)では、堤体内ひび割れの検出に弾 性波を用いる場合の各種分析法(図-4)の適用性等 について、UAVを利用した赤外線や可視画像での表面 状態調査との組合せも視野に検討を進めている。各 研究とも弾性波の計測からボーリング調査でのひび 割れと概ね整合する推定結果が得られており、引続 き実用化に向け研究を進める予定である。



弾性波での堤体内部ひび割れの探査 図-4 (表面波探査の実施状況)

このほか国総研では、フィルダムを対象とした非 破壊調査技術として電気探査技術に注目し、大規模 地震時等にひび割れが生じた際、その深さを迅速に 把握するための探査用注入材料の研究も進めている。 これまでの屋外実験では、市販の自己充填材に電解 質(塩化カルシウム水溶液)を混合した材料を用い れば、堤体材料との比抵抗差によりひび割れの検出 が可能となり、また、ひび割れへの充填性が高く周 辺に浸透しにくいことでひび割れ深さが比較的良好 に再現できる結果が得られている(図-5)。



電気探査によるひび割れ検出例(盛土地盤) 図-5

## 3. 今後の展望

本稿で紹介した各種調査技術は、引続きダムでの 適用方法や留意点等について検討を進め、既往の各 種調査・診断技術とともに、現場での点検等に活用 できる技術資料等にまとめていきたいと考えている。