AN APPROACH TO REDUCE TIE-UPS BY SPEED ADAPTATION AT SAG/TUNNEL SECTIONS ON EXPRESSWAYS

Hiroshi Kobayashi (Senior Researcher)
Satoshi Mizuguchi (Researcher)
Shingo Otsuka (Research Engineer)
Hirokazu Ichikawa (Guest Research Engineer)

Intelligent Transport Systems Division
National Institute for Land and Infrastructure Management (NILIM)
Ministry of Land, Infrastructure and Transport, Japan
1. STUDY BACKGROUND

- Definition of tie-up in Japan
 Vehicle operational speed is less than 40km/h, or repetitive stop-and-go operations over an excessive distance, traveling more than 1 km and during more than 15 minutes.

- Primary tie-up section definition
 The subject sections have experienced either prime bottlenecks more than 5 times annually, maximum tie-up length averaging 2 km or more, or more than 30 instances of tie-up annually.

In Japan about 50% of the traffic tie-ups on inter-urban expressways occur at the sag/tunnel sections.

- Proportion of primary tie-up sections by road structures on expressways (inter-urban) in Japan (2002)

A total number = 221 sections
2. TIE-UPS FORMING MECHANISM AT SAG/TUNNEL SECTION

A driver is sometimes unaware of the topographical change from descending to ascending, leading to deceleration. When vehicles are operating in high density, this results in a closing distance with the vehicle ahead, and the following driver brakes to keep an appropriate space.

This impact ripples over the following vehicles, and eventually tie-ups form.

A driver is often subject to a feeling of oppression due to the tunnel structure and tends to decelerate.

Tie-up mechanism at sag section

At tunnel approaching section
3. HYPOTHESIS FOR DISPERSION OF TIE-UPS

- Generally vehicles operate in the overtaking lane while avoiding low speed vehicles on the main lane as the traffic volume increases.
 - Vehicles concentrating in the overtaking lane form a highly dense traffic operation causing congestion in these sections!

Also tie-up formed in a main lane

Tie-up formed in an overtaking lane

When traffic demands converge into an overtaking lane

Being unaware of deceleration at sag section, or due to depressed feeling toward tunnel inside

HYPOTHESIS

- The unbiased lane use resists the formation of tie-ups.
- Speed adaptation control that decelerates vehicle operation creates a disincentive to changing lanes to an overtaking lane, and balanced use is achieved over all lanes.
This study focused on the impact of balanced lane use and dispersion of tie-ups by speed adaptation control (ISA).

A traffic simulator, SIPA (Smart Infrastructure Performance Analyzer) was used to calculate the impact.
The frequently congested sag/tunnel sections between Otsuki and Hachioji are observed.

- About 51,000 vehicles/day are observed in this section.

Subject Field for Simulation

Kobotoke Tunnel on the Chuo-Expressway

- **Otsuki Interchange**
- **Otsuki JCT**
- **Saruhashi Bus Stop**
- **Nakanohashi**
- **Around Uenohara Interchange**
- **Kobotoke Tunnel**
- **Around Moto-hachioji Bus Stop**
- **Hachioji Toll Barrier**

Number of tie-ups around the Kobotoke tunnel (2002, Inbound)

<table>
<thead>
<tr>
<th>Bottleneck location</th>
<th>Iwadono Tunnel</th>
<th>Saruhashi Bus Stop</th>
<th>Nakanohashi</th>
<th>Around Uenohara Interchange</th>
<th>Kobotoke Tunnel</th>
<th>Around Moto-hachioji Bus Stop</th>
<th>Hachioji Toll Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP</td>
<td>67.7</td>
<td>65.5</td>
<td>61.9</td>
<td>48.7</td>
<td>40.4</td>
<td>30.3</td>
<td>25.8</td>
</tr>
<tr>
<td>No. of tie-ups</td>
<td>9</td>
<td>27</td>
<td>37</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Note</td>
<td>The lane-doubling to the extended 6 service lanes has dispersed tie-ups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The subject section is the inbound 30 km extension around the Kobotoke tunnel.
7. SIMULATION CONDITIONS
VALUE AND TIMING TO CONTROL SPEED

- The Q-V graph in the section around Kobotoke tunnel reads 3200 vehicles/h of traffic volume.
 - The trigger value to start control is set to 2400 vehicles/h, taking the safe side.
 - The set speed is 80 km/h, taking account of a speed restriction in the subject section.

Q-V graph around Kobotoke tunnel and a timing of speed control

Bottleneck Capacity: 3200 vehicles/h
Applied timing of speed control: 2400 vehicles/h
8. SIMULATION CONDITIONS
SIMULATION CASES

- Two specific days are selected to simulate tie-ups in different scales.

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Date</th>
<th>Maximum tie-up length (Tie-up duration)</th>
<th>Traffic volume (Commercial vehicle ratios)</th>
<th>Length of a speed control applied section</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2nd Thursday 2002</td>
<td>4.6 km (2 hours and 30 minutes, (17:15\sim19:45))</td>
<td>5,123 vehicles /two hours* (8.4%)</td>
<td>2 km</td>
<td></td>
</tr>
<tr>
<td>Case 2</td>
<td>July 27th Saturday 2002</td>
<td>9.4 km (3 hours and 40 minutes, (16:45\sim20:25))</td>
<td>5,504 vehicles /two hours* (8.3%)</td>
<td>5 km</td>
</tr>
</tbody>
</table>

* In Two hours between 15:00 and 17:00 before tie-ups
9. OUTLINE OF SIPA
Smart Infrastructure Performance Analyzer

- The traffic simulator, SIPA has been developed by NILIM in order to measure the performance and effectiveness of ITS such as VICS, ETC and AHS.

- SIPA employs a ‘vehicular modeling’ to emulate vehicle start, halt, following operation, lane changes and so on.
Case 1 shows the complete tie-up dissipation.
Case 2 does not show tie-up dissipation due to larger traffic demand compared to Case 1.
12. IMPACT OF SPEED CONTROL
SHIFT OF LANE USE RATE AND TRAFFIC CAPACITY

Case 1

Case 2

Passenger car equivalent supposed to be 2.0

Shifts of lane use rate and traffic capacity by each cases

- The control section of 2km scored about 50% of overtaking lane use to achieve parity lane use.
- This 2 km control section proves the potential to increase traffic capacity by 5% to 7%.
13. IMPACT OF SPEED CONTROL
SHIFT IN TRAVEL TIME

Case 1

Calculating subject distance is 4.6 km of the current tie-up forming section

Shifts of total travel time (Speed control applied section: 2 km)

- Case 1 results in a travel time reduction by 60%.
- Case 2 does not show tie-up dissipation; however, travel time is reduced by 13%.

Case 2

Calculating subject distance is a 10 km section, including the current tie-up forming section
14. IMPACT OF SPEED CONTROL DIFFERENCE BY LENGTH OF APPLIED SECTION

Case 2

- **Applied section=2km**
- **Applied section=5km**
- **Applied section=10km**

<table>
<thead>
<tr>
<th>Applied section</th>
<th>Total travel time (vehicle x hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2km</td>
<td>Speed control is not applied</td>
</tr>
<tr>
<td></td>
<td>Speed control is applied</td>
</tr>
<tr>
<td>5km</td>
<td>Speed control is not applied</td>
</tr>
<tr>
<td></td>
<td>Speed control is applied</td>
</tr>
<tr>
<td>10km</td>
<td>Speed control is not applied</td>
</tr>
<tr>
<td></td>
<td>Speed control is applied</td>
</tr>
</tbody>
</table>

Calculating subject distance=10km from Kobotoke tunnel (Including the current tie-up forming section)

Shifts of total travel time by the length of applied section

- Along the extended control section, the travel time loss increases when speed control is applied over the non-tie-ups section in the course of tie-ups generation, extending and dissipation.
- Consequently, even if the control section is extended more, more additional benefits cannot be reaped.
15. CONCLUSION

- The outcome in this study proved that unbiased lane use is effective for tie-up dissipation at sag/tunnel sections.
- Further, a speed adaptation control is effective to achieve balanced use among lanes.
- An effective impact come out from an appropriate extension of a speed control section.

The following items are challenges to overcome toward system introduction:

- Further study on a position to apply speed adaptations, distance, speed restriction and timing, etc according to characteristics of control sections and time of day
- An examination of the safe, economical, and effective tools to control speed
- Consensus building among users

Thank you.