Clarifying the future roadside environmental load reduction effects of the penetration of next-generation vehicles

KADOYU Katsunori, Head OGAWA Tomohiro, Senior Researcher NAGAHAMA Yosuke, Researcher Road Environment Division, Road Department

(Key words) Next-generation vehicles, carbon dioxide, roadside environmental load

1. Introduction

Cargo vehicles produce 34% of all CO₂ emissions from the transport sector¹⁾, and it is important to introduce cargo vehicle environmental load countermeasures. This research trial calculated the future roadside environmental load reduction effects of the penetration of next-generation vehicles.

2. Trial calculation conditions

The table presents an outline of the trial calculation conditions. In addition, traffic volume, traveling speed, next-generation vehicle penetration rate and CO_2 emission factor were set with reference to source documents²⁾³⁾⁴⁾⁵⁾⁶⁾⁷⁾.

3. Trial calculation results

As a result of the trial calculation of CO_2 emissions by the procedure shown in Figure 1, the CO_2 emissions in 2050 were calculated as 45% lower than in 2010. At this time, CO_2 emissions by small-sized vehicles and heavy vehicles are almost equal, but because the penetration rate of large next-generation vehicles will be lower than that of small-sized next-generation vehicles, the trial calculation revealed that in 2050, heavy vehicles will emit between 60% and 70% of all CO_2 (Fig. 2).

4. Summary

The trial calculation clearly shows that even among cargo vehicles, it is important to promote measures to spread the use of next generation vehicles as heavy vehicles in particular.

Table.	Outline of	Trial	Calculation	Conditions

Items	Settings		
Object of calculation	Carbon dioxide (CO ₂)		
Calculation period	2010, 2020, 2030, 2040, 2050		
Calculation range	Sections where normal traffic volumes are surveyed during the road traffic census		
Next-generation vehicles considered	Hybrid vehicles, plug-in hybrid vehicles, electric vehicles, fuel cell vehicles, clean diesel vehicles, gasoline vehicles		
Level of penetration of next-generation vehicles	Zero: (penetration rate same as in 2010) Low: (case where penetration rate is estimated as low) Medium: (average penetration rate) High: (case where penetration rate is estimated as high)		

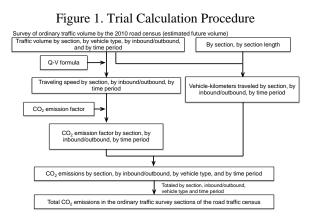
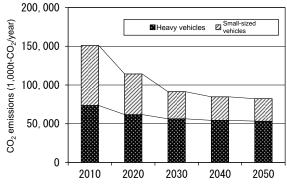



Figure 2. Trial Calculation of CO₂ Emissions (Penetration level: high)

[Sources]

1) Ministry of Land, Infrastructure, Transport and Tourism web site: Carbon dioxide emissions by the transport sector, http://www.mlit.go.jp/

2) Ministry of Land, Infrastructure, Transport and Tourism, Study Committee on Future Traffic Demand Estimation on Roads: Estimation of future traffic demand, 2008

3) Central Environment Council: Report on countermeasures and policies beginning in 2013, 2012

4) M. Dohi et. al.: TECHNICAL NOTE of NILIM, No. 671, Grounds for the calculation of the automobile emission coefficient used to evaluate road environment impacts, etc. (2010 Edition), 2012

5) K. Matsuhashi, Measures to achieve medium to long term sharp reduction of CO_2 emissions in the transport sector, Global Environment, 12, pp. 179 – 189, 2007

6) Next-generation Vehicle Penetration Strategy Committee: Next-generation vehicle penetration strategy, 2009

7) Metropolitan Tokyo: Automobile Management Plan Preparation Handbook, 2011